Page 137 - Read Online
P. 137
Page 40 Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37
482. El Tayebi HM, Waly AA, Assal RA, Hosny KA, Esmat G, Abdelaziz AI. Transcriptional activation of the IGF-II/IGF-1R axis and
inhibition of IGFBP-3 by miR-155 in hepatocellular carcinoma. Oncol Lett 2015;10:3206-12. DOI PubMed PMC
483. Sun JF, Zhang D, Gao CJ, Zhang YW, Dai QS. Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell
proliferation by targeting PTEN. Med Sci Monit Basic Res 2019;25:218-28. DOI PubMed PMC
484. Tang B, Lei B, Qi G, et al. MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J
Exp Clin Cancer Res 2016;35:93. DOI PubMed PMC
485. Target ScanHuman. FBXW7 ENST00000281708.4. Available from: http://www.targetscan.org/cgibin/targetscan/vert_72/view_gene.
cgi?rs=ENST00000281708.4&taxid=9606&members=&showcnc=0&shownc=0&showncf1=&showncf2=&subset=1 [Last accessed
on 17 Dec 2021].
486. Mao JH, Kim IJ, Wu D, et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science
2008;321:1499-502. DOI PubMed PMC
487. Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018;17:115. DOI PubMed PMC
488. Lan R, Jin B, Liu YZ, Zhang K, Niu T, You Z. Genome and transcriptome profiling of FBXW family in human prostate cancer. Am J
Clin Exp Urol 2020;8:116-28. PubMed PMC
489. Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug
targets. Cancer Discov 2011;1:487-95. DOI PubMed PMC
490. Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative analysis of the miRNome of Bovine milk fat, whey and
cells. PLoS One 2016;11:e0154129. DOI PubMed PMC
491. Ammah AA, Do DN, Bissonnette N, Gévry N, Ibeagha-Awemu EM. Co-expression network analysis identifies miRNA-mRNA
networks potentially regulating milk traits and blood metabolites. Int J Mol Sci 2018;19:2500. DOI PubMed PMC
492. Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009;23:862-76. DOI
PubMed PMC
493. Kumar M, Lu Z, Takwi AA, et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2011;30:843-53.
DOI PubMed PMC
494. Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr
Metab (Lond) 2017;14:55. DOI PubMed PMC
495. Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ, White RW. miR-125b promotes growth of prostate cancer xenograft tumor through
targeting pro-apoptotic genes. Prostate 2011;71:538-49. DOI PubMed PMC
496. Amir S, Ma AH, Shi XB, Xue L, Kung HJ, Devere White RW. Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent
and p53-independent apoptosis in prostate cancer. PLoS One 2013;8:e61064. DOI PubMed PMC
497. Downing SR, Russell PJ, Jackson P. Alterations of p53 are common in early stage prostate cancer. Can J Urol 2003;10:1924-33.
PubMed
498. Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol
2010;2:a001057. DOI PubMed PMC
499. Buckbinder L, Talbott R, Velasco-Miguel S, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature
1995;377:646-9. DOI PubMed
500. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue
specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007;67:3043-53. DOI
PubMed
501. Stambolic V, Macpherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell 2001;8:317-25. DOI PubMed
502. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A
2005;102:8204-9. DOI PubMed PMC
503. Levine AJ, Feng Z, Mak TW, You H, Jin S. Coordination and communication between the p53 and IGF-1-AKT-TOR signal
transduction pathways. Genes Dev 2006;20:267-75. DOI PubMed
504. Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53.
Neoplasia 2007;9:1152-9. DOI PubMed PMC
505. Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell
Biol 2019;11:231-44. DOI PubMed PMC
506. Stegeman S, Moya L, Selth LA, Spurdle AB, Clements JA, Batra J. A genetic variant of MDM4 influences regulation by multiple
microRNAs in prostate cancer. Endocr Relat Cancer 2015;22:265-76. DOI PubMed
507. Kotarac N, Dobrijevic Z, Matijasevic S, Savic-Pavicevic D, Brajuskovic G. Association of KLK3, VAMP8 and MDM4 genetic
variants within microRNA binding sites with prostate cancer: evidence from Serbian population. Pathol Oncol Res 2020;26:2409-23.
DOI PubMed
508. Elmarakeby HA, Hwang J, Arafeh R, et al. Biologically informed deep neural network for prostate cancer discovery. Nature
2021;598:348-52. DOI PubMed PMC
509. Mecocci S, Pietrucci D, Milanesi M, et al. Transcriptomic characterization of cow, donkey and goat milk extracellular vesicles
reveals their anti-inflammatory and immunomodulatory potential. Int J Mol Sci 2021;22:12759. DOI PubMed PMC
510. Correia NC, Gírio A, Antunes I, Martins LR, Barata JT. The multiple layers of non-genetic regulation of PTEN tumour suppressor
activity. Eur J Cancer 2014;50:216-25. DOI PubMed
511. Eguchi T, Watanabe K, Hara ES, Ono M, Kuboki T, Calderwood SK. OstemiR: a novel panel of microRNA biomarkers in
osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS One 2013;8:e58796. DOI PubMed PMC