Page 141 - Read Online
P. 141
Page 44 Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37
Program 2011;67:131-45. DOI PubMed
602. Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD. High school dietary dairy intake and teenage
acne. J Am Acad Dermatol 2005;52:207-14. DOI PubMed
603. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in adolescent girls. Dermatol Online J 2006:12.
PubMed
604. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in teenaged boys. J Am Acad Dermatol 2008;58:787-
93. DOI PubMed PMC
605. Juhl CR, Bergholdt HKM, Miller IM, Jemec GBE, Kanters JK, Ellervik C. Dairy intake and acne vulgaris: a systematic review and
meta-analysis of 78,529 children, adolescents, and young adults. Nutrients 2018;10:1049. DOI PubMed PMC
606. Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A, Omidian M, Taheri F. Dairy intake and acne development: a meta-analysis of
observational studies. Clin Nutr 2019;38:1067-75. DOI PubMed
607. Dai R, Hua W, Chen W, Xiong L, Li L. The effect of milk consumption on acne: a meta-analysis of observational studies. J Eur Acad
Dermatol Venereol 2018;32:2244-53. DOI PubMed
608. Robeva R, Assyov Y, Tomova A, Kumanov P. Acne vulgaris is associated with intensive pubertal development and altitude of
residence-a cross-sectional population-based study on 6,200 boys. Eur J Pediatr 2013;172:465-71. DOI
609. Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol
2013;22:311-5. DOI PubMed PMC
610. Monfrecola G, Lembo S, Caiazzo G, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients' skin.
Exp Dermatol 2016;25:153-5. DOI PubMed
611. Agamia NF, Abdallah DM, Sorour O, Mourad B, Younan DN. Skin expression of mammalian target of rapamycin and forkhead box
transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet. Br J
Dermatol 2016;174:1299-307. DOI PubMed
612. Galobardes B, Davey Smith G, Jeffreys M, Kinra S, McCarron P. Acne in adolescence and cause-specific mortality: lower coronary
heart disease but higher prostate cancer mortality: the Glasgow Alumni Cohort Study. Am J Epidemiol 2005;161:1094-101. DOI
PubMed
613. Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer 2007;121:2688-92.
DOI PubMed PMC
614. Ugge H, Udumyan R, Carlsson J, et al. Acne in late adolescence and risk of prostate cancer. Int J Cancer 2018;142:1580-5. DOI
PubMed PMC
615. Tate PL, Bibb R, Larcom LL. Milk stimulates growth of prostate cancer cells in culture. Nutr Cancer 2011;63:1361-6. DOI PubMed
616. Park SW, Kim JY, Kim YS, Lee SJ, Lee SD, Chung MK. A milk protein, casein, as a proliferation promoting factor in prostate
cancer cells. World J Mens Health 2014;32:76-82. DOI PubMed PMC
2
617. Gordon WG, Semmett WF, Cable RS, Morris M. Amino acid composition of α-casein and β-casein . J Am Chem Soc 1949;71:3293-
7. DOI
618. Kim JY, Bang SI, Lee SD. α-casein changes gene expression profiles and promotes tumorigenesis of prostate cancer cells. Nutr
Cancer 2020;72:239-51. DOI PubMed
619. Bernichtein S, Pigat N, Capiod T, et al. High milk consumption does not affect prostate tumor progression in two mouse models of
benign and neoplastic lesions. PLoS One 2015;10:e0125423. DOI PubMed PMC
620. Larsson SC, Mason AM, Kar S, et al. Genetically proxied milk consumption and risk of colorectal, bladder, breast, and prostate
cancer: a two-sample Mendelian randomization study. BMC Med 2020;18:370. DOI PubMed PMC
621. C l a u s n i t z e r J . S t a t i s t a . P e r c a p i t a c o n s u m p t i o n o f m i l k i n F i n l a n d 2 0 1 0 - 2 0 2 0 . A v a i l a b l e f r o m :
https://www.statista.com/statistics/460031/per-capita-consumption-of-milk-in-finland/ [Last accessed on 17 Dec 2021].
622. Vissers LET, Sluijs I, van der Schouw YT, et al. Dairy product intake and risk of type 2 diabetes in EPIC-interAct: a mendelian
randomization study. Diabetes Care 2019;42:568-75. DOI PubMed PMC
623. Kitsiou-Tzeli S, Tzetis M. Maternal epigenetics and fetal and neonatal growth. Curr Opin Endocrinol Diabetes Obes 2017;24:43-6.
DOI PubMed
624. Cullen SM, Hassan N, Smith-Raska M. Effects of noninherited ancestral genotypes on offspring phenotypes†. Biol Reprod
2021;105:747-60. DOI PubMed
625. Godos Godos J, Tieri M, Ghelfi F, et al. Dairy foods and health: an umbrella review of observational studies. Int J Food Sci Nutr
2020;71:138-51. DOI PubMed
626. Cavero-Redondo I, Alvarez-Bueno C, Sotos-Prieto M, Gil A, Martinez-Vizcaino V, Ruiz JR. Milk and dairy product consumption
and risk of mortality: an overview of systematic reviews and meta-analyses. Adv Nutr 2019;10:S97-S104. DOI PubMed PMC
627. López-Plaza B, Bermejo LM, Santurino C, Cavero-Redondo I, Álvarez-Bueno C, Gómez-Candela C. Milk and dairy product
consumption and prostate cancer risk and mortality: an overview of systematic reviews and meta-analyses. Adv Nutr 2019;10:S212-
23. DOI PubMed PMC
628. Ong SL, Blenkiron C, Haines S, et al. Ruminant milk-derived extracellular vesicles: a nutritional and therapeutic opportunity?
Nutrients 2021;13:2505. DOI PubMed PMC
629. Zhang Y, Xu Q, Hou J, et al. Loss of bioactive microRNAs in cow's milk by ultra-high-temperature treatment but not by
pasteurization treatment. J Sci Food Agric 2021. DOI
630. The American College of Obstreticians and Gynecologists. Nutrition during pregnancy. Available from:
https://www.acog.org/womens-health/faqs/nutrition-during-pregnancy [Last accessed on 17 Dec 2021].