Page 127 - Read Online
P. 127
Page 30 Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37
PubMed
174. Steck SE, Omofuma OO, Su LJ, et al. Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North
Carolina-Louisiana Prostate Cancer Project (PCaP). Am J Clin Nutr 2018;107:799-807. DOI PubMed
175. Tat D, Kenfield SA, Cowan JE, et al. Milk and other dairy foods in relation to prostate cancer recurrence: data from the cancer of the
prostate strategic urologic research endeavor (CaPSURE™). Prostate 2018;78:32-9. DOI PubMed PMC
176. Gaard M, Tretli S, Løken EB. Dietary fat and the risk of breast cancer: a prospective study of 25,892 Norwegian women. Int J Cancer
1995;63:13-7. DOI PubMed
177. Ronco AL, De Stéfani E, Dáttoli R. Dairy foods and risk of breast cancer: a case-control study in Montevideo, Uruguay. Eur J
Cancer Prev 2002;11:457-63. DOI PubMed
178. Wang F, Yu L, Wang F, et al. Risk factors for breast cancer in women residing in urban and rural areas of eastern China. J Int Med
Res 2015;43:774-89. DOI PubMed
179. Galván-Salazar HR, Arreola-Cruz A, Madrigal-Pérez D, et al. Association of milk and meat consumption with the development of
breast cancer in a western Mexican population. Breast Care (Basel) 2015;10:393-6. DOI PubMed PMC
180. Ji J, Sundquist J, Sundquist K. Lactose intolerance and risk of lung, breast and ovarian cancers: aetiological clues from a population-
based study in Sweden. Br J Cancer 2015;112:149-52. DOI PubMed PMC
181. McCann SE, Hays J, Baumgart CW, Weiss EH, Yao S, Ambrosone CB. Usual consumption of specific dairy foods is associated with
breast cancer in the Roswell Park cancer institute data bank and biorepository. Curr Dev Nutr 2017;1:e000422. DOI PubMed PMC
182. Fraser GE, Jaceldo-Siegl K, Orlich M, Mashchak A, Sirirat R, Knutsen S. Dairy, soy, and risk of breast cancer: those confounded
milks. Int J Epidemiol 2020;49:1526-37. DOI PubMed PMC
183. Kaluza J, Komatsu S, Lauriola M, et al. Long-term consumption of non-fermented and fermented dairy products and risk of breast
cancer by estrogen receptor status - Population-based prospective cohort study. Clin Nutr 2021;40:1966-73. DOI PubMed
184. Duarte-Salles T, Fedirko V, Stepien M, et al. Dairy products and risk of hepatocellular carcinoma: the European Prospective
Investigation into Cancer and Nutrition. Int J Cancer 2014;135:1662-72. DOI PubMed
185. Yang W, Sui J, Ma Y, et al. A prospective study of dairy product intake and the risk of hepatocellular carcinoma in U.S. men and
women. Int J Cancer 2020;146:1241-9. DOI PubMed PMC
186. Wang XJ, Jiang CQ, Zhang WS, et al. Milk consumption and risk of mortality from all-cause, cardiovascular disease and cancer in
older people. Clin Nutr 2020;39:3442-51. DOI PubMed
187. Melnik BC. Dairy consumption and hepatocellular carcinoma risk. Ann Transl Med 2021;9:736. DOI PubMed PMC
188. Wang J, Li X, Zhang D. Dairy product consumption and risk of non-hodgkin lymphoma: a meta-analysis. Nutrients 2016;8:120. DOI
PubMed PMC
189. Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment.
Cancer Metastasis Rev 2016;35:515-24. DOI PubMed
190. Sharma VR, Gupta GK, Sharma AK, et al. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and
regulation. Curr Pharm Des 2017;23:1633-8. DOI PubMed
191. Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res 2017;7:383-404. PubMed PMC
192. Liu J, Li HQ, Zhou FX, Yu JW, Sun L, Han ZH. Targeting the mTOR pathway in breast cancer. Tumour Biol
2017;39:1010428317710825. DOI PubMed
193. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in
estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2018;25:392-401. DOI PubMed
194. Butt G, Shahwar D, Qureshi MZ, et al. Role of mTORC1 and mTORC2 in breast cancer: therapeutic targeting of mTOR and its
partners to overcome metastasis and drug resistance. Adv Exp Med Biol 2019;1152:283-92. DOI PubMed
195. Sridharan S, Basu A. Distinct roles of mTOR targets S6K1 and S6K2 in breast cancer. Int J Mol Sci 2020;21:1199. DOI PubMed
PMC
196. Xu BH, Li XX, Yang Y, et al. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through
Rab1A-dependent activation of mTORC1 by Rab1A. Oncotarget 2015;6:20813-28. DOI PubMed PMC
197. Ericksen RE, Lim SL, McDonnell E, et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and
promotes tumor development and progression. Cell Metab 2019;29:1151-65.e6. DOI PubMed PMC
198. Ericksen RE, Han W. Malignant manipulaTORs of metabolism: suppressing BCAA catabolism to enhance mTORC1 activity. Mol
Cell Oncol 2019;6:1585171. DOI PubMed PMC
199. Akula SM, Abrams SL, Steelman LS, et al. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory
miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019;23:915-29. DOI PubMed
200. Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR signaling pathway in hepatocellular
carcinoma. Int J Mol Sci 2020;21:1266. DOI PubMed PMC
201. Xu ZZ, Xia ZG, Wang AH, et al. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance
and inhibitory effect of rituximab. Ann Hematol 2013;92:1351-8. DOI PubMed
202. Majchrzak A, Witkowska M, Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma:
current knowledge and clinical significance. Molecules 2014;19:14304-15. DOI PubMed PMC
203. Browne SH, Diaz-Perez JA, Preziosi M, et al. mTOR activity in AIDS-related diffuse large B-cell lymphoma. PLoS One
2017;12:e0170771. DOI PubMed PMC
204. Ricci JE, Chiche J. Metabolic reprogramming of non-Hodgkin's B-cell lymphomas and potential therapeutic strategies. Front Oncol
2018;8:556. DOI PubMed PMC