Page 127 - Read Online
P. 127

Page 30                   Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37

                    PubMed
               174.      Steck SE, Omofuma OO, Su LJ, et al. Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North
                    Carolina-Louisiana Prostate Cancer Project (PCaP). Am J Clin Nutr 2018;107:799-807.  DOI  PubMed
               175.      Tat D, Kenfield SA, Cowan JE, et al. Milk and other dairy foods in relation to prostate cancer recurrence: data from the cancer of the
                    prostate strategic urologic research endeavor (CaPSURE™). Prostate 2018;78:32-9.  DOI  PubMed  PMC
               176.      Gaard M, Tretli S, Løken EB. Dietary fat and the risk of breast cancer: a prospective study of 25,892 Norwegian women. Int J Cancer
                    1995;63:13-7.  DOI  PubMed
               177.      Ronco AL, De Stéfani E, Dáttoli R. Dairy foods and risk of breast cancer: a case-control study in Montevideo, Uruguay. Eur J
                    Cancer Prev 2002;11:457-63.  DOI  PubMed
               178.      Wang F, Yu L, Wang F, et al. Risk factors for breast cancer in women residing in urban and rural areas of eastern China. J Int Med
                    Res 2015;43:774-89.  DOI  PubMed
               179.      Galván-Salazar HR, Arreola-Cruz A, Madrigal-Pérez D, et al. Association of milk and meat consumption with the development of
                    breast cancer in a western Mexican population. Breast Care (Basel) 2015;10:393-6.  DOI  PubMed  PMC
               180.      Ji J, Sundquist J, Sundquist K. Lactose intolerance and risk of lung, breast and ovarian cancers: aetiological clues from a population-
                    based study in Sweden. Br J Cancer 2015;112:149-52.  DOI  PubMed  PMC
               181.      McCann SE, Hays J, Baumgart CW, Weiss EH, Yao S, Ambrosone CB. Usual consumption of specific dairy foods is associated with
                    breast cancer in the Roswell Park cancer institute data bank and biorepository. Curr Dev Nutr 2017;1:e000422.  DOI  PubMed  PMC
               182.      Fraser GE, Jaceldo-Siegl K, Orlich M, Mashchak A, Sirirat R, Knutsen S. Dairy, soy, and risk of breast cancer: those confounded
                    milks. Int J Epidemiol 2020;49:1526-37.  DOI  PubMed  PMC
               183.      Kaluza J, Komatsu S, Lauriola M, et al. Long-term consumption of non-fermented and fermented dairy products and risk of breast
                    cancer by estrogen receptor status - Population-based prospective cohort study. Clin Nutr 2021;40:1966-73.  DOI  PubMed
               184.      Duarte-Salles T, Fedirko V, Stepien M, et al. Dairy products and risk of hepatocellular carcinoma: the European Prospective
                    Investigation into Cancer and Nutrition. Int J Cancer 2014;135:1662-72.  DOI  PubMed
               185.      Yang W, Sui J, Ma Y, et al. A prospective study of dairy product intake and the risk of hepatocellular carcinoma in U.S. men and
                    women. Int J Cancer 2020;146:1241-9.  DOI  PubMed  PMC
               186.      Wang XJ, Jiang CQ, Zhang WS, et al. Milk consumption and risk of mortality from all-cause, cardiovascular disease and cancer in
                    older people. Clin Nutr 2020;39:3442-51.  DOI  PubMed
               187.      Melnik BC. Dairy consumption and hepatocellular carcinoma risk. Ann Transl Med 2021;9:736.  DOI  PubMed  PMC
               188.      Wang J, Li X, Zhang D. Dairy product consumption and risk of non-hodgkin lymphoma: a meta-analysis. Nutrients 2016;8:120.  DOI
                    PubMed  PMC
               189.      Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment.
                    Cancer Metastasis Rev 2016;35:515-24.  DOI  PubMed
               190.      Sharma VR, Gupta GK, Sharma AK, et al. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and
                    regulation. Curr Pharm Des 2017;23:1633-8.  DOI  PubMed
               191.      Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res 2017;7:383-404.  PubMed  PMC
               192.      Liu  J,  Li  HQ,  Zhou  FX,  Yu  JW,  Sun  L,  Han  ZH.  Targeting  the  mTOR  pathway  in  breast  cancer.  Tumour  Biol
                    2017;39:1010428317710825.  DOI  PubMed
               193.      Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in
                    estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2018;25:392-401.  DOI  PubMed
               194.      Butt G, Shahwar D, Qureshi MZ, et al. Role of mTORC1 and mTORC2 in breast cancer: therapeutic targeting of mTOR and its
                    partners to overcome metastasis and drug resistance. Adv Exp Med Biol 2019;1152:283-92.  DOI  PubMed
               195.      Sridharan S, Basu A. Distinct roles of mTOR targets S6K1 and S6K2 in breast cancer. Int J Mol Sci 2020;21:1199.  DOI  PubMed
                    PMC
               196.      Xu BH, Li XX, Yang Y, et al. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through
                    Rab1A-dependent activation of mTORC1 by Rab1A. Oncotarget 2015;6:20813-28.  DOI  PubMed  PMC
               197.      Ericksen RE, Lim SL, McDonnell E, et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and
                    promotes tumor development and progression. Cell Metab 2019;29:1151-65.e6.  DOI  PubMed  PMC
               198.      Ericksen RE, Han W. Malignant manipulaTORs of metabolism: suppressing BCAA catabolism to enhance mTORC1 activity. Mol
                    Cell Oncol 2019;6:1585171.  DOI  PubMed  PMC
               199.      Akula SM, Abrams SL, Steelman LS, et al. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory
                    miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019;23:915-29.  DOI  PubMed
               200.      Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR signaling pathway in hepatocellular
                    carcinoma. Int J Mol Sci 2020;21:1266.  DOI  PubMed  PMC
               201.      Xu ZZ, Xia ZG, Wang AH, et al. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance
                    and inhibitory effect of rituximab. Ann Hematol 2013;92:1351-8.  DOI  PubMed
               202.      Majchrzak A, Witkowska M, Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma:
                    current knowledge and clinical significance. Molecules 2014;19:14304-15.  DOI  PubMed  PMC
               203.      Browne SH, Diaz-Perez JA, Preziosi M, et al. mTOR activity in AIDS-related diffuse large B-cell lymphoma. PLoS One
                    2017;12:e0170771.  DOI  PubMed  PMC
               204.      Ricci JE, Chiche J. Metabolic reprogramming of non-Hodgkin's B-cell lymphomas and potential therapeutic strategies. Front Oncol
                    2018;8:556.  DOI  PubMed  PMC
   122   123   124   125   126   127   128   129   130   131   132