Page 124 - Read Online
P. 124
Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37 Page 27
2017;77:573-83. DOI PubMed
79. Shin S, Park YH, Jung SH, et al. Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer.
NPJ Genom Med 2021;6:45. DOI PubMed PMC
80. Danarto R, Astuti I, Umbas R, Haryana SM. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with
prostate cancer. Turk J Urol 2020;46:26-30. DOI PubMed PMC
81. Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in
urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019;79:88-95. DOI PubMed
82. Zhou H, Zhu X. MicroRNA-21 and microRNA-30c as diagnostic biomarkers for prostate cancer: a meta-analysis. Cancer Manag Res
2019;11:2039-50. DOI PubMed PMC
83. Huang W, Kang XL, Cen S, Wang Y, Chen X. High-level expression of microRNA-21 in peripheral blood mononuclear cells is a
diagnostic and prognostic marker in prostate cancer. Genet Test Mol Biomarkers 2015;19:469-75. DOI PubMed
84. Zedan AH, Blavnsfeldt SG, Hansen TF, et al. Heterogeneity of miRNA expression in localized prostate cancer with
clinicopathological correlations. PLoS One 2017;12:e0179113. DOI PubMed PMC
85. Sharma N, Baruah MM. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol
2019;21:126-44. DOI PubMed
86. Arisan ED, Rencuzogullari O, Freitas IL, et al. Upregulated Wnt-11 and miR-21 expression trigger epithelial mesenchymal transition
in aggressive prostate cancer cells. Biology (Basel) 2020;9:52. DOI PubMed PMC
87. Guan C, Zhang L, Wang S, et al. Upregulation of microRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5.
Cancer Biol Ther 2019;20:1149-61. DOI PubMed PMC
88. Pfeffer SR, Yang CH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res 2015;76:270-7. DOI PubMed
89. Mishra S, Lin CL, Huang TH, Bouamar H, Sun LZ. MicroRNA-21 inhibits p57Kip2 expression in prostate cancer. Mol Cancer
2014;13:212. DOI PubMed PMC
90. Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in
prostate cancer cells. Biochem Biophys Res Commun 2009;383:280-5. DOI PubMed
91. Mishra S, Deng JJ, Gowda PS, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta
receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014;33:4097-106. DOI PubMed PMC
92. Yang CH, Pfeffer SR, Sims M, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote
tumorigenesis. J Biol Chem 2015;290:6037-46. DOI PubMed PMC
93. Reis ST, Pontes-Junior J, Antunes AA, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase
regulator, in prostate cancer. BMC Urol 2012;12:14. DOI PubMed PMC
94. Porzycki P, Ciszkowicz E, Semik M, Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential
diagnostic tool for prostate cancer recognition. Int Urol Nephrol 2018;50:1619-26. DOI PubMed PMC
95. Hatano K, Fujita K. Extracellular vesicles in prostate cancer: a narrative review. Transl Androl Urol 2021;10:1890-907. DOI
PubMed PMC
96. Szczyrba J, Löprich E, Wach S, et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res
2010;8:529-38. DOI PubMed
97. Dybos SA, Flatberg A, Halgunset J, et al. Increased levels of serum miR-148a-3p are associated with prostate cancer. APMIS
2018;126:722-31. DOI PubMed
98. Gurbuz V, Sozen S, Bilen CY, Konac E. miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1
and PTEN expression. Oncol Lett 2021;22:805. DOI PubMed PMC
99. Murata T, Takayama K, Katayama S, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell
growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 2010;13:356-61. DOI
100. Jalava SE, Urbanucci A, Latonen L, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant
prostate cancer. Oncogene 2012;31:4460-71. DOI PubMed
101. Hamilton MP, Rajapakshe KI, Bader DA, et al. The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-
CLIP. Neoplasia 2016;18:356-70. DOI PubMed PMC
102. Zhu Z, He X, Johnson C, et al. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein. Biochem Biophys Res
Commun 2007;358:66-72. DOI PubMed PMC
103. Valdez CD, Kunju L, Daignault S, Wojno KJ, Day ML. The E2F1/DNMT1 axis is associated with the development of AR negative
castration resistant prostate cancer. Prostate 2013;73:1776-85. DOI PubMed
104. Sengupta D, Deb M, Patra SK. Antagonistic activities of miR-148a and DNMT1: ectopic expression of miR-148a impairs DNMT1
mRNA and dwindle cell proliferation and survival. Gene 2018;660:68-79. DOI PubMed
105. Lee E, Wang J, Yumoto K, et al. DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate
cancer metastasis. Neoplasia 2016;18:553-66. DOI PubMed PMC
106. He H, Cai M, Zhu J, et al. miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cell Dev Biol Anim
2018;54:241-9. DOI PubMed
107. Qingjuan L, Xiaojuan F, Wei Z, et al. miR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in
lupus nephritis. Am J Physiol Cell Physiol 2016;310:C470-8. DOI PubMed
108. Jin X, Hao Z, Zhao M, et al. MicroRNA-148a regulates the proliferation and differentiation of ovine preadipocytes by targeting
PTEN. Animals (Basel) 2021;11:820. DOI PubMed PMC
109. Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by