Page 123 - Read Online
P. 123

Page 26                   Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37

                    amino acid needs for optimal health. Am J Clin Nutr 2008;87:1576S-81S.  DOI  PubMed
               48.       Souci SW, Fachmann W, Kraut H. Food composition and nutrition tables. 8th revised and extended edition. Volume XXXII.
                    Stuttgart, Germany: MedPharm; 2016. p. 1263.
               49.       Salisbury TB, Arthur S. The regulation and function of the L-type amino acid transporter 1 (LAT1) in cancer. Int J Mol Sci
                    2018;19:2373.  DOI  PubMed  PMC
               50.       Zhang BK, Moran AM, Bailey CG, Rasko JEJ, Holst J, Wang Q. EGF-activated PI3K/Akt signalling coordinates leucine uptake by
                    regulating LAT3 expression in prostate cancer. Cell Commun Signal 2019;17:83.  DOI  PubMed  PMC
               51.       Otsuki H, Kimura T, Yamaga T, Kosaka T, Suehiro JI, Sakurai H. Prostate cancer cells in different androgen receptor status employ
                    different leucine transporters. Prostate 2017;77:222-33.  DOI  PubMed
               52.       Strmiska V, Michalek P, Eckschlager T, et al. Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of
                    precision medicine. Biochim Biophys Acta Rev Cancer 2019;1871:248-58.  DOI  PubMed
               53.       Zhang H, Pan Y, Zheng L, et al. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion.
                    Cancer Res 2011;71:3257-67.  DOI  PubMed  PMC
               54.       Ge C, Zhao G, Li Y, et al. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene
                    2016;35:366-76.  DOI  PubMed  PMC
               55.       Akech J, Wixted JJ, Bedard K, et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone
                    osteolysis and osteoblastic metastatic lesions. Oncogene 2010;29:811-21.  DOI  PubMed  PMC
               56.       Kim B, Kim H, Jung S, et al. A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone.
                    J Bone Miner Res 2020;35:155-66.  DOI  PubMed
               57.       Hsieh AC, Liu Y, Edlind MP, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature
                    2012;485:55-61.  DOI  PubMed  PMC
               58.       Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance.
                    Asian J Androl 2014;16:378-86.  DOI  PubMed  PMC
               59.       Zabala-letona A, Arruabarrena-aristorena A, Martín-martín N, et al. mTORC1-dependent AMD1 regulation sustains polyamine
                    metabolism in prostate cancer. Nature 2017;547:109-13.  DOI  PubMed  PMC
               60.       Audet-Walsh É, Vernier M, Yee T, et al. SREBF1 activity is regulated by an AR/mTOR nuclear axis in prostate cancer. Mol Cancer
                    Res 2018;16:1396-405.  DOI  PubMed
               61.       Han Y, Liu C, Zhang D, et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of
                    the Akt/mTOR pathway and acceleration of cell cycle. Int J Oncol 2019;55:629-44.  DOI  PubMed  PMC
               62.       Binal Z, Açıkgöz E, Kızılay F, Öktem G, Altay B. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+
                    4/CD44+ prostate cancer stem cells. Clin Transl Oncol 2020;22:1040-8.  DOI  PubMed
               63.       Ngollo M, Dagdemir A, Karsli-Ceppioglu S, et al. Epigenetic modifications in prostate cancer. Epigenomics 2014;6:415-26.  DOI
                    PubMed
               64.       Liao Y, Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J Androl 2019;21:279-90.
                    DOI  PubMed  PMC
               65.       Zhu KC, Lu JJ, Xu XL, Sun JM. MicroRNAs in androgen-dependent PCa. Front Biosci (Landmark Ed) 2013;18:748-55.  DOI
                    PubMed
               66.       Eringyte I, Zamarbide Losada JN, Powell SM, Bevan CL, Fletcher CE. Coordinated AR and microRNA regulation in prostate cancer.
                    Asian J Urol 2020;7:233-50.  DOI  PubMed  PMC
               67.       Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett
                    2017;407:9-20.  DOI  PubMed
               68.       Verma S, Pandey M, Shukla GC, Singh V, Gupta S. Integrated analysis of miRNA landscape and cellular networking pathways in
                    stage-specific prostate cancer. PLoS One 2019;14:e0224071.  DOI  PubMed  PMC
               69.       Folini M, Gandellini P, Longoni N, et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010;9:12.  DOI  PubMed
                    PMC
               70.       Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell
                    Cycle 2010;9:923-9.  DOI  PubMed  PMC
               71.       Yang Y, Guo JX, Shao ZQ. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation
                    and invasion: an experimental study. Asian Pac J Trop Med 2017;10:87-91.  DOI  PubMed
               72.       Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene.
                    Oncogene 2008;27:4373-9.  DOI  PubMed
               73.       Go H, Jang JY, Kim PJ, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in
                    diffuse large B-cell lymphoma. Oncotarget 2015;6:15035-49.  DOI  PubMed  PMC
               74.       Song  W,  Li  Q,  Wang  L,  Wang  L.  Modulation  of  FoxO1  expression  by  miR-21  to  promote  growth  of  pancreatic  ductal
                    adenocarcinoma. Cell Physiol Biochem 2015;35:184-90.  DOI  PubMed
               75.       Shukla S, Shukla M, Maclennan GT, Fu P, Gupta S. Deregulation of FOXO3A during prostate cancer progression. Int J Oncol
                    2009;34:1613-20.  DOI  PubMed  PMC
               76.       Wang K, Li PF. Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 2010;285:16958-66.  DOI  PubMed  PMC
               77.       Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-
                    independent prostate cancer growth. Cancer Res 2009;69:7165-9.  DOI  PubMed  PMC
               78.       Foj L, Ferrer F, Serra M, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate
   118   119   120   121   122   123   124   125   126   127   128