Page 123 - Read Online
P. 123
Page 26 Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37
amino acid needs for optimal health. Am J Clin Nutr 2008;87:1576S-81S. DOI PubMed
48. Souci SW, Fachmann W, Kraut H. Food composition and nutrition tables. 8th revised and extended edition. Volume XXXII.
Stuttgart, Germany: MedPharm; 2016. p. 1263.
49. Salisbury TB, Arthur S. The regulation and function of the L-type amino acid transporter 1 (LAT1) in cancer. Int J Mol Sci
2018;19:2373. DOI PubMed PMC
50. Zhang BK, Moran AM, Bailey CG, Rasko JEJ, Holst J, Wang Q. EGF-activated PI3K/Akt signalling coordinates leucine uptake by
regulating LAT3 expression in prostate cancer. Cell Commun Signal 2019;17:83. DOI PubMed PMC
51. Otsuki H, Kimura T, Yamaga T, Kosaka T, Suehiro JI, Sakurai H. Prostate cancer cells in different androgen receptor status employ
different leucine transporters. Prostate 2017;77:222-33. DOI PubMed
52. Strmiska V, Michalek P, Eckschlager T, et al. Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of
precision medicine. Biochim Biophys Acta Rev Cancer 2019;1871:248-58. DOI PubMed
53. Zhang H, Pan Y, Zheng L, et al. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion.
Cancer Res 2011;71:3257-67. DOI PubMed PMC
54. Ge C, Zhao G, Li Y, et al. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene
2016;35:366-76. DOI PubMed PMC
55. Akech J, Wixted JJ, Bedard K, et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone
osteolysis and osteoblastic metastatic lesions. Oncogene 2010;29:811-21. DOI PubMed PMC
56. Kim B, Kim H, Jung S, et al. A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone.
J Bone Miner Res 2020;35:155-66. DOI PubMed
57. Hsieh AC, Liu Y, Edlind MP, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature
2012;485:55-61. DOI PubMed PMC
58. Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance.
Asian J Androl 2014;16:378-86. DOI PubMed PMC
59. Zabala-letona A, Arruabarrena-aristorena A, Martín-martín N, et al. mTORC1-dependent AMD1 regulation sustains polyamine
metabolism in prostate cancer. Nature 2017;547:109-13. DOI PubMed PMC
60. Audet-Walsh É, Vernier M, Yee T, et al. SREBF1 activity is regulated by an AR/mTOR nuclear axis in prostate cancer. Mol Cancer
Res 2018;16:1396-405. DOI PubMed
61. Han Y, Liu C, Zhang D, et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of
the Akt/mTOR pathway and acceleration of cell cycle. Int J Oncol 2019;55:629-44. DOI PubMed PMC
62. Binal Z, Açıkgöz E, Kızılay F, Öktem G, Altay B. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+
4/CD44+ prostate cancer stem cells. Clin Transl Oncol 2020;22:1040-8. DOI PubMed
63. Ngollo M, Dagdemir A, Karsli-Ceppioglu S, et al. Epigenetic modifications in prostate cancer. Epigenomics 2014;6:415-26. DOI
PubMed
64. Liao Y, Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J Androl 2019;21:279-90.
DOI PubMed PMC
65. Zhu KC, Lu JJ, Xu XL, Sun JM. MicroRNAs in androgen-dependent PCa. Front Biosci (Landmark Ed) 2013;18:748-55. DOI
PubMed
66. Eringyte I, Zamarbide Losada JN, Powell SM, Bevan CL, Fletcher CE. Coordinated AR and microRNA regulation in prostate cancer.
Asian J Urol 2020;7:233-50. DOI PubMed PMC
67. Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett
2017;407:9-20. DOI PubMed
68. Verma S, Pandey M, Shukla GC, Singh V, Gupta S. Integrated analysis of miRNA landscape and cellular networking pathways in
stage-specific prostate cancer. PLoS One 2019;14:e0224071. DOI PubMed PMC
69. Folini M, Gandellini P, Longoni N, et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010;9:12. DOI PubMed
PMC
70. Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell
Cycle 2010;9:923-9. DOI PubMed PMC
71. Yang Y, Guo JX, Shao ZQ. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation
and invasion: an experimental study. Asian Pac J Trop Med 2017;10:87-91. DOI PubMed
72. Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene.
Oncogene 2008;27:4373-9. DOI PubMed
73. Go H, Jang JY, Kim PJ, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in
diffuse large B-cell lymphoma. Oncotarget 2015;6:15035-49. DOI PubMed PMC
74. Song W, Li Q, Wang L, Wang L. Modulation of FoxO1 expression by miR-21 to promote growth of pancreatic ductal
adenocarcinoma. Cell Physiol Biochem 2015;35:184-90. DOI PubMed
75. Shukla S, Shukla M, Maclennan GT, Fu P, Gupta S. Deregulation of FOXO3A during prostate cancer progression. Int J Oncol
2009;34:1613-20. DOI PubMed PMC
76. Wang K, Li PF. Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 2010;285:16958-66. DOI PubMed PMC
77. Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-
independent prostate cancer growth. Cancer Res 2009;69:7165-9. DOI PubMed PMC
78. Foj L, Ferrer F, Serra M, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate