Page 122 - Read Online
P. 122
Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37 Page 25
17. R i d d e r M . S t a t i s t a : p e r c a p i t a c o n s u m p t i o n o f m i l k i n S w e d e n 2 0 0 8 - 2 0 1 8 . A v a i l a b l e f r o m :
https://www.statista.com/statistics/557618/per-capita-consumption-of-milk-in-sweden/ [Last accessed on 17 Dec 2021].
18. Statista. Per capita consumption of fluid milk products in the United States from 2000 to 2020 (in pounds)*. Available from:
https://www.statista.com/statistics/184240/us-per-capita-consumption-of-fluid-milk- products/ [Last accessed on 17 Dec 2021].
19. Statista. Per capita milk and dairy product consumption in China from 2013 to 2020. Available from:
https://www.statista.com/statistics/1098497/china-per-capita-milk-dairy-consumption/ [Last accessed on 17 Dec 2021].
20. Melnik BC. Milk-a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci
2015;16:17048-87. DOI PubMed PMC
21. Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow's milk-mediated mTORC1-signaling in the initiation and
progression of prostate cancer. Nutr Metab (Lond) 2012;9:74. DOI PubMed PMC
22. Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR,
MAPK, and WNT signaling. Int J Mol Sci 2020;21:4507. DOI PubMed PMC
23. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev 2018;32:1105-40. DOI PubMed
PMC
24. Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-
deficient prostate cancer. Cancer Cell 2011;19:575-86. DOI PubMed PMC
25. Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel) 2017;9:34. DOI
PubMed PMC
26. Pearson HB, Li J, Meniel VS, et al. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with pten
loss to accelerate progression and castration-resistant growth. Cancer Discov 2018;8:764-79. DOI PubMed
27. Chen H, Zhou L, Wu X, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci (Landmark Ed)
2016;21:1084-91. DOI PubMed
28. Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN conundrum: how to target PTEN-deficient prostate cancer.
Cells 2020;9:2342. DOI PubMed PMC
29. Cairns P, Okami K, Halachmi S, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res
1997;57:4997-5000. PubMed
30. Suzuki H, Freije D, Nusskern DR, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate
cancer tissues. Cancer Res 1998;58:204-9. PubMed
31. Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas.
Clin Cancer Res 1998;4:811-5. PubMed
32. Rudge SA, Wakelam MJ. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2016;57:176-92. DOI
PubMed PMC
33. Jamaspishvili T, Berman DM, Ross AE, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018;15:222-34.
DOI PubMed PMC
34. Geybels MS, Fang M, Wright JL, et al. PTEN loss is associated with prostate cancer recurrence and alterations in tumor DNA
methylation profiles. Oncotarget 2017;8:84338-48. DOI PubMed PMC
35. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary
prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999;59:4291-6. PubMed
36. Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:11-22.
DOI PubMed PMC
37. Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature
2012;487:239-43. DOI PubMed PMC
38. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215-28. DOI
PubMed PMC
39. Armenia J, Wankowicz SAM, Liu D, et al; PCF/SU2C International Prostate Cancer Dream Team. The long tail of oncogenic drivers
in prostate cancer. Nat Genet 2018;50:645-51. DOI PubMed PMC
40. Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A
2019;116:11428-36. DOI PubMed PMC
41. Liu P, Li S, Gan L, Kao TP, Huang H. A transcription-independent function of FOXO1 in inhibition of androgen-independent
activation of the androgen receptor in prostate cancer cells. Cancer Res 2008;68:10290-9. DOI PubMed
42. Ma Q, Fu W, Li P, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator
recruitment. Mol Endocrinol 2009;23:213-25. DOI PubMed PMC
43. Bohrer LR, Liu P, Zhong J, et al. FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice
variants. Prostate 2013;73:1017-27. DOI PubMed PMC
44. Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci
2014;10:614-9. DOI PubMed PMC
45. Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol 2019;1210:319-
31. DOI PubMed
46. Wang Q, Bailey CG, Ng C, et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid
transport during prostate cancer progression. Cancer Res 2011;71:7525-36. DOI PubMed
47. Millward DJ, Layman DK, Tomé D, Schaafsma G. Protein quality assessment: impact of expanding understanding of protein and