Page 122 - Read Online
P. 122

Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37  Page 25

               17.       R i d d e r   M  .   S t a t i s t a :   p e r   c a p i t a   c o n s u m  p t i o n   o f   m  i l k   i n   S w  e d e n   2 0 0 8 - 2 0 1 8 .   A  v a i l a b l e   f r o m  :
                    https://www.statista.com/statistics/557618/per-capita-consumption-of-milk-in-sweden/ [Last accessed on 17 Dec 2021].
               18.       Statista. Per capita consumption of fluid milk products in the United States from 2000 to 2020 (in pounds)*. Available from:
                    https://www.statista.com/statistics/184240/us-per-capita-consumption-of-fluid-milk- products/ [Last accessed on 17 Dec 2021].
               19.       Statista.  Per  capita  milk  and  dairy  product  consumption  in  China  from  2013  to  2020.  Available  from:
                    https://www.statista.com/statistics/1098497/china-per-capita-milk-dairy-consumption/ [Last accessed on 17 Dec 2021].
               20.       Melnik  BC.  Milk-a  nutrient  system  of  mammalian  evolution  promoting  mTORC1-dependent  translation.  Int  J  Mol  Sci
                    2015;16:17048-87.  DOI  PubMed  PMC
               21.       Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow's milk-mediated mTORC1-signaling in the initiation and
                    progression of prostate cancer. Nutr Metab (Lond) 2012;9:74.  DOI  PubMed  PMC
               22.       Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR,
                    MAPK, and WNT signaling. Int J Mol Sci 2020;21:4507.  DOI  PubMed  PMC
               23.       Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev 2018;32:1105-40.  DOI  PubMed
                    PMC
               24.       Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-
                    deficient prostate cancer. Cancer Cell 2011;19:575-86.  DOI  PubMed  PMC
               25.       Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel) 2017;9:34.  DOI
                    PubMed  PMC
               26.       Pearson HB, Li J, Meniel VS, et al. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with pten
                    loss to accelerate progression and castration-resistant growth. Cancer Discov 2018;8:764-79.  DOI  PubMed
               27.       Chen H, Zhou L, Wu X, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci (Landmark Ed)
                    2016;21:1084-91.  DOI  PubMed
               28.       Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN conundrum: how to target PTEN-deficient prostate cancer.
                    Cells 2020;9:2342.  DOI  PubMed  PMC
               29.       Cairns P, Okami K, Halachmi S, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer.  Cancer Res
                    1997;57:4997-5000.  PubMed
               30.       Suzuki H, Freije D, Nusskern DR, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate
                    cancer tissues. Cancer Res 1998;58:204-9.  PubMed
               31.       Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas.
                    Clin Cancer Res 1998;4:811-5.  PubMed
               32.       Rudge SA, Wakelam MJ. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2016;57:176-92.  DOI
                    PubMed  PMC
               33.       Jamaspishvili T, Berman DM, Ross AE, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018;15:222-34.
                    DOI  PubMed  PMC
               34.       Geybels MS, Fang M, Wright JL, et al. PTEN loss is associated with prostate cancer recurrence and alterations in tumor DNA
                    methylation profiles. Oncotarget 2017;8:84338-48.  DOI  PubMed  PMC
               35.       McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary
                    prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999;59:4291-6.  PubMed
               36.       Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:11-22.
                    DOI  PubMed  PMC
               37.       Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature
                    2012;487:239-43.  DOI  PubMed  PMC
               38.       Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215-28.  DOI
                    PubMed  PMC
               39.       Armenia J, Wankowicz SAM, Liu D, et al; PCF/SU2C International Prostate Cancer Dream Team. The long tail of oncogenic drivers
                    in prostate cancer. Nat Genet 2018;50:645-51.  DOI  PubMed  PMC
               40.       Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A
                    2019;116:11428-36.  DOI  PubMed  PMC
               41.       Liu P, Li S, Gan L, Kao TP, Huang H. A transcription-independent function of FOXO1 in inhibition of androgen-independent
                    activation of the androgen receptor in prostate cancer cells. Cancer Res 2008;68:10290-9.  DOI  PubMed
               42.       Ma Q, Fu W, Li P, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator
                    recruitment. Mol Endocrinol 2009;23:213-25.  DOI  PubMed  PMC
               43.       Bohrer LR, Liu P, Zhong J, et al. FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice
                    variants. Prostate 2013;73:1017-27.  DOI  PubMed  PMC
               44.       Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci
                    2014;10:614-9.  DOI  PubMed  PMC
               45.       Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol 2019;1210:319-
                    31.  DOI  PubMed
               46.       Wang Q, Bailey CG, Ng C, et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid
                    transport during prostate cancer progression. Cancer Res 2011;71:7525-36.  DOI  PubMed
               47.       Millward DJ, Layman DK, Tomé D, Schaafsma G. Protein quality assessment: impact of expanding understanding of protein and
   117   118   119   120   121   122   123   124   125   126   127