Page 122 - Read Online
P. 122
Peng et al. Intell Robot 2022;2(3):298312 I http://dx.doi.org/10.20517/ir.2022.27 Page 306
3.3. Controller Design under the TOD scheduling scheme Equation (6)
Theorem 3 Under TOD scheduling scheme Equation (6), for given matrices , , , , and scalars , >
0, > 0, > 0, system Equation (12) is exponentially stable with a prescribed ∞ performance , if there exist
˜
˜
˜
˜
˜
real matrices > 0, > 0, > 0, , = 1, · · · , , > 0, > 0, > 0 and appropriate dimensions ,ℶ,
such that
( )
Õ
ℎ
(31)
=1
∗
. . (17), (32) , (33), (34), (35)
˜ ∗ ∗
Ξ 11
˜ ˜ ∗ < 0, (32)
Ξ
21 Ξ 22
˜ ˜
Ξ
31 0 Ξ 33
˜ ˜ (33)
˜ ˜ > 0,
ℎ ∗ > 0, (34)
− (ℶ − )
< 0, (35)
ℶ − −
is solvable, and the controller gain is given by = ℶ , where (32) is equivalent to Equation (32)
−1
∗
2 ˜
˜ −1
by replacing − −1 − with −ℎ , − 2 , and
˜ ˜ ˜ ˜ ˜
Ψ 11 Ψ 12 Ψ 13 Ψ 14 Ψ 15
˜ ˜
∗ Ψ 22 Ψ 23 0 0
˜ ˜
Ξ 11 = ∗ ∗ Ψ 33 0 0 ,
˜
∗ ∗ ∗ Ψ 44 0
˜
∗ ∗ ∗ ∗ Ψ 55
{ ˜ 2 , · · · , ˜ }, = 1
˜ = { ˜ 1 , · · · , ˜ −1 }, =
, · · · , ˜ }, ≠ 1,
{ ˜ 1 , · · · , ˜ | ≠
[− 2 2 , · · · , − ], = 1
˜ ¯
= [− 1 1 , · · · , − −1 −1 ], =
, · · · , − ], ≠ 1,
[− 1 1 , · · · , − | ≠
1 ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
˜ = − + 2 , Ξ 33 = − , Ψ 11 = + + 2 + + , Ψ 12 = − − + , Ψ 22 = 2 − − , = ,
˜
˜
˜
˜ ˜
˜ ˜
˜
2
˜
˜
˜
˜
Ψ 23 = − , ˜ = [− 1 1 , · · · , − ], Ψ 33 = − , Ψ 14 = ˜ , Ψ 44 = ˜ , Ψ 55 = − , Ψ 13 = − , = ,
√
√
˜
˜
˜
˜
−1
−1
Ξ 31 = [ , 0, · · · , 0], Ξ 22 = {− ˜ −1 , − , · · · , − }, Ξ = [ , 1 1 , · · · , ], = .
1 21
˜
Proof: Let = , = , = , = 1, · · · , . Pre- and post-multiplying Equation (15) and
−1 ˜
Equation (16) with
−1 −1 −1
{ , · · · , , , , , · · · , , , }
1