Page 122 - Read Online
P. 122

Peng et al. Intell Robot 2022;2(3):298­312  I http://dx.doi.org/10.20517/ir.2022.27  Page 306


               3.3. Controller Design under the TOD scheduling scheme Equation (6)

               Theorem 3 Under TOD scheduling scheme Equation (6), for given matrices   ,   ,   ,   , and scalars       ,    >
               0,    > 0,    > 0, system Equation (12) is exponentially stable with a prescribed    ∞ performance   , if there exist
                                      ˜
                                                                                                    ˜
                                                                      ˜
                                                          ˜
                                 ˜
               real matrices    > 0,    > 0,   > 0,   ,    = 1, · · · ,   ,       > 0,       > 0,       > 0 and appropriate dimensions   ,ℶ,  
               such that
                               (       )
                                 Õ
                                             ℎ   
                                                                                                      (31)
                                   =1
                                                       ∗
                            .  .                  (17),                  (32) ,                  (33),                  (34),                  (35)
                                                  ˜    ∗    ∗ 
                                                  Ξ 11
                                                              
                                                  ˜   ˜     ∗    < 0,                               (32)
                                                  Ξ
                                                  21  Ξ 22    
                                                  ˜        ˜ 
                                                  Ξ
                                                  31   0   Ξ 33

                                                         ˜     ˜                                      (33)
                                                         ˜     ˜  > 0,

                                                      ℎ     ∗  > 0,                                   (34)
                                                               

                                                                    
                                                −       (ℶ   −     )
                                                                     < 0,                             (35)
                                              ℶ   −         −  
               is solvable, and the controller gain is given by    =   ℶ , where                  (32) is equivalent to Equation (32)
                                                            −1
                                                                                ∗
                                                 2 ˜
                                     ˜ −1
               by replacing −   −1  −           with −ℎ    ,          − 2    , and
                                      
                                                         ˜    ˜    ˜    ˜    ˜ 
                                                         Ψ 11  Ψ 12  Ψ 13  Ψ 14  Ψ 15
                                                              ˜    ˜            
                                                         ∗   Ψ 22  Ψ 23  0   0 
                                                   ˜               ˜            
                                                   Ξ 11 =  ∗  ∗   Ψ 33  0    0  ,
                                                                        ˜       
                                                         ∗    ∗    ∗   Ψ 44  0 
                                                                                
                                                                              ˜ 
                                                          ∗   ∗    ∗    ∗   Ψ 55
                                                                                
                                                  
                                                          { ˜    2 , · · · , ˜       },       = 1
                                                  
                                                  
                                                  
                                              ˜       =         { ˜    1 , · · · , ˜      −1 },       =   
                                                  
                                                  
                                                                   , · · · , ˜       },       ≠ 1,   
                                                          { ˜    1 , · · · , ˜      |   ≠     
                                                  
                                          
                                          [−     2    2   , · · · , −                ],       = 1
                                          
                                          
                                           
                                      ˜ ¯
                                            = [−     1    1   , · · · , −       −1      −1   ],       =   
                                          
                                          
                                                                     , · · · , −                ],       ≠ 1,   
                                           [−     1    1   , · · · , −             |   ≠     
                                          
                        1 ˜     ˜  ˜       ˜                     ˜   ˜ ˜             ˜   ˜    ˜   ˜   ˜  ˜    ˜
                  ˜       = −        + 2        , Ξ 33 = −  , Ψ 11 =      +       + 2     +    +   , Ψ 12 = −         −    +    , Ψ 22 = 2   −    −    ,   =       ,
                            
                   ˜
                                                            ˜
                                                                 ˜
                                                                     ˜ ˜
                                                                                                        ˜    ˜
                                                                                                  ˜
                                                                                               2
                                                                               ˜
                                                                                       ˜
                        ˜   
                             ˜
                  Ψ 23 =    −   , ˜      = [−     1    1   , · · · , −                ], Ψ 33 =    −   , Ψ 14 = ˜      , Ψ 44 = ˜       , Ψ 55 = −     , Ψ 13 = −   ,    =       ,
                                                                                   √
                                                                                                √
                                                                        ˜   
                                                                                                           ˜
                                      ˜
                   ˜
                                                           −1
                                                                    −1
                   Ξ 31 = [    , 0, · · · , 0], Ξ 22 =         {−     ˜ −1   , −   , · · · , −   }, Ξ  = [            ,          1    1 , · · · ,                   ],   =       .
                                                          1              21
                                             ˜
               Proof: Let    =    ,       =           ,       =           ,    = 1, · · · ,   . Pre- and post-multiplying Equation (15) and
                               −1 ˜
               Equation (16) with
                                                           −1  −1       −1
                                                   {  , · · · ,   ,   ,   ,    , · · · ,    ,   ,   }
                                                               1          
   117   118   119   120   121   122   123   124   125   126   127