Page 119 - Read Online
P. 119

Page 303                        Peng et al. Intell Robot 2022;2(3):298­312  I http://dx.doi.org/10.20517/ir.2022.27

               Remark 1       is introduced to cope with reset conditions, which is continuous on [      ,      +1 ), and does not grow in
               the jumps when    =      +1 since

                                                          
                                                       Õ        
 p                   
 
 2

                                 −      (   −  ) +       (     +1 ) ≤ −     −2         
             (−  (     +1 ) +   (      ))
  (14)
                                        +1
                                                         =1
               Theorem 1 Under TOD scheduling scheme Equation (6), for given scalars       ,    > 0,    > 0, impulsive system
               Equation (12) is exponentially stable with a prescribed    ∞ performance   , if there exist appropriate dimensions
                  and real matrices    > 0,    > 0,   > 0,       > 0,       > 0,       > 0,    = 1, · · · ,    such that

                                                 Ξ 11  ∗    ∗ 
                                                              
                                                  Ξ         ∗    < 0,                               (15)
                                                  21  Ξ 22    
                                                              
                                                  Ξ
                                                  31   0   Ξ 33
                                                            
                                                            
                                                             > 0,                                     (16)
                                                            

                                                       Ω 11  Ω 12
                                                  Ω    =         < 0                                  (17)
                                                        ∗   Ω 22
               are feasible for   ,    = 1, · · · ,   , where

                                                
                          Ψ 11  Ψ 12  Ψ 13  Ψ 14  Ψ 15
                                                      
                                                       
                                                     [−       2    2 , · · · , −                ],       = 1
                          ∗   Ψ 22  Ψ 23  0   0      
                                                       
                                                
                                                    ¯
                   Ξ 11 =  ∗   ∗   Ψ 33  0    0  ,       = [−       1    1 , · · · , −         −1      −1 ],       =   
                                                     
                                                       
                          ∗    ∗    ∗   Ψ 44  0                                , · · · , −                ],       ≠ 1,   
                                                      [−       1    1 , · · · , −               |   ≠     
                                                       
                           ∗   ∗    ∗    ∗   Ψ 55 
                                                
                                                                
                             {   2 , · · · ,       },       = 1  [     2    2 , · · · ,               ],       = 1
                     
                                                                 
                                                                
                                                                
                       =         {   1 , · · · ,      −1 },       =     ,       = [     1    1 , · · · ,        −1      −1 ],       =   
                                                                
                                                                
                                       , · · · ,       },       ≠ 1,                , · · · ,               ],       ≠ 1,   .
                             {   1 , · · · ,      |   ≠          [     1    1 , · · · ,              |   ≠     
                                                                
                                                                               
                                                               
                                       
                         Ψ 11 =      +       + 2     +    +   , Ψ 13 = −   , Ψ 14 =       , Ψ 23 =    −   ,       = [  ,       , 0,       ,   ],
                                                                     1−2                              
                          Ψ 22 = 2   −    −    , Ψ 33 =    −   , Ψ 44 =       , Ω 11 = −        +       , Ψ 12 = −         −    +    ,
                                                                        −1
                                = [−       1    1 , · · · , −                ], Ω 22 =       −          −2         , Ξ 22 =         {−  , −   1 , · · · , −      },
                                                           √               √
                             Ψ 15 =     , Ω 12 =       , Ξ 21 = [              ,          1    1    1 , · · · ,                         ], Ψ 55 = −     ,
                                                                                                2
                                                                    
                                           1              2       Í    
                                          = −        + 2        , Θ =       +                       , Ξ 31 = [  , 0, · · · , 0].
                                                                       
                                                                    =1
               Proof: Differentiating   (  ) along Equation (12) and applying Wirtinger-based integral inequality [26] , we can
               obtain
                                                                                            
                              1  Õ    p         2     p        2      2    2    2     1  Õ p           2
                ¤
                                                             (  )| + |  (  )| −    |  (  )| ≤ −
                 (  ) + 2    (  ) −   |                   (  )| − 2  |                       |                   (  )|
                                                                                          
                                  =1,  ≠                                                  =1,  ≠  
                                                                                ¹    
                                                                                        
                        2
                   2
                −    |  (  )| −    −2                     2              −2                ¤    (  )   ¤(  )      (18)
                                                                                             
                                    (   −       )    (   −       ) + |  (  )| + ¤ (  )Θ¤(  ) −   
                                                                                    −     
                        
                     Õ
                            
                                             
                                                        
                + 2         (  )                        (  ) + 2   (  )   ¤  (  ) +    (  )(2     +   )  (  ),
                            
                      =1,  ≠  
               where       (  ) =       {  (  ),   (   −   (  )),   (   −       ),       (  ),   (  )}.
                                                      ¯
   114   115   116   117   118   119   120   121   122   123   124