Page 102 - Read Online
P. 102

Page 96                            Li et al. Intell Robot 2022;2(1):89–104  I http://dx.doi.org/10.20517/ir.2022.02

                                            ,       ,       ,       should meet the conditions of Lemma 1:
               According to the authors of Ref  [23] ®  ®  ®
                                                                  ∫    
                                        
                                         ®                         k ®   (  )kd  )
                                        k      ( ®   )(  )k ≤       (k  (0)k +
                                                                 0
                                                                 ∫    
                                           ®                                                          (25)
                                          k     +1 ( ®   )(  )k ≤    G (k  (0)k +  k ®   (  )kd  )
                                                                ∫  0
                                                                    
                                         ®
                                        k      ( ®   )(  )k ≤       (k  (0)k +  k ®   (  )kd  )
                                                                 0
               Let us define the operator   ,       :       [0,  ] →       [0,  ] below:
                                     ® ®
                                 {
                                   ®                            −1
                                    ( ®   )(  ) = [   + (1 −   )        (  )  (  )] [   −           (  )  (  )] ®   (  )
                                                                                                      (26)
                                   ®          ®   ®
                                        ( ®   )(  ) = (      +   )( ®   )(  )
               Equation (23) can be rewritten as:
                                                                    ®
                                                   ®
                                           ®      +1 (  ) +      +1 (  ®      +1 (  ))(  ) =       (  ®       (  ))(  )  (27)
               Since      +1 ( ®   )(  ) can meet Lemma 1, the following operators can be defined:
                     ®
                                                {
                                                  ® ¯
                                                              ®
                                                       ®
                                                      +1 (  )(  ) =      +1 ( ®   )(  )
                                                                                                      (28)
                                                             ® ¯
                                                                  ®
                                                      ®
                                                  ®
                                                      +1 (  )(  ) =      +1 (  )(  )
               where ®   (  ) +      +1 ( ®   )(  ) =   (  ), ∀  (  ) ∈       [0,  ]. Comparing with Equation (27), the following relationship
                                      ®
                           ®
                                            ®
               can be obtained:
                                           {
                                             ®             ® ¯   ®
                                                  +1 (  ®       )(  ) = −     +1 (      (  ®       ))(  )
                                                                                                      (29)
                                             ® ¯  ®            ®
                                                  +1 (      (  ®       ))(  ) =      +1 (  ®      +1 )(  )
               From Lemma 1, one obtains
                                                                      ∫    
                                   ® ¯   ®                   ®             ®                          (30)
                                  k     +1 (      (  ®       ))(  )k ≤    ¯     (k       +1 (0)k +  k      (  ®       )(  )kd  
                                                                       0
               From Equations (24), (26), and (30), the following equation can be derived
                                                                           ∫    
                                                                   ®
                                                       ®
                                   ®
                                 k     +1 (  ®       )(  )k ≤       (k       +1 (0)k + k        (0)k +  k  ®       (  )kd    (31)
                                                                            0
                             · max(      , 1).
               where       =    ¯   
               Let us define the operator       :       [0,  ] →       [0,  ] as follows:
                                      ®
                                                           ®
                                                 ®
                                                               ®
                                                      ( ®   )(  ) = (      +      +1 )( ®   )(  )     (32)
               Equation (27) can be expressed accordingly as:
                                         ®              ®              ®     ®   ®                    (33)
                                 ®      +1 (  ) =      +1 (  ®       (  ))(  ) +       (  ®       (  ))(  ) = (     +1 +       +   )(  ®       )(  )
               Taking the norm on both sides of Equation (32) and substituting the inequalities in Equations (25) and (31)
               into Equation (32) leads to

                      ®
                                                 ®
                                   ®
                    k      (  ®       )(  )k ≤ k      (  ®       )(  )k + k     +1 (  ®       )(  )k
   97   98   99   100   101   102   103   104   105   106   107