Page 101 - Read Online
P. 101

Li et al. Intell Robot 2022;2(1):89–104  I http://dx.doi.org/10.20517/ir.2022.02     Page 95

                                                             −1
                     ®
                                      ®
                         ®
                                   ®
               where   (  ,   ) 8×1 = [ ® ¤     (  ,   )] T  ,   ( ®   , ® ¤   ) 8×4 = [0,    ( ®   )] T  , and    = [0,   ] T  .
                                         8×1                      8×4            8×4
               For the nonlinear system of Equation (17), based on the ILC law in Equation (8), if the system can meet the
               following condition,
                                                      −1
                                       ([   +         (  )  (  )] [   −         (  )  (  )]) < 1,    ∈ [0,  ]  (18)
               the trajectory tracking error of the dynamic system converges to a certain small range with the increasing
               iterations.


               Let the system state, output, and input errors be set as:

                                                 
                                                  ®       ®      ®
                                                         (  ) =       (  ) −       (  )
                                                 
                                                 
                                                   ®
                                                          ®
                                                                 ®
                                                          (  ) =       (  ) −       (  )              (19)
                                                 
                                                 
                                                 
                                                   ®       (  ) = ®       (  ) − ®       (  )
                                                 
               Definingthevariable    1 (  (  ),   ) =   (      (  ),   )−  (      (  )−  (  ),   ), thefollowinginequalitiescanbeobtained
                                     ®
                                                                 ®
                                 ®
                                                        ® ®
                                             ® ®
               by Lipschitz condition:
                                     {
                                       ®   ®
                                      k   1 (  (  ),   )k ≤    1
                                                                                                      (20)
                                           ®
                                                                     ®
                                                        ®
                                                    ®
                                                                            ®
                                       ®
                                      k   1 (   1 (  ),   ) −    1 (   2 (  ),   )k ≤    2 k   1 (  ) −    2 (  )k
               Combining Equations (17) and (19) results in
                                            ® ¤
                                                    ®    ®
                                                   (  ) =    1 (        (  ),   ) +   (  )  ®       (  )
                                           
                                           
                                              ®           ®                                           (21)
                                                    (  ) =   (  )        (  )
                                           
                                           
                                            ® ¤     ¤    ®          ® ¤
                                                    (  ) =   (  )        (  ) +   (  )        (  )
                                           
               with
                                                       ®          ®             ® ¤
                                     ®      +1 (  ) =   ®       (  ) −               (  ) −              +1 (  ) −       (  )        (  )
                                                    ® ¤          ®              ® ¤                   (22)
                                            −       (  )       +1 (  ) +                +1 (  ) +         (  )       +1 (  )
               Substituting Equation (21) into Equation (22) yields
                                                   ®
                                                                       ®
                            ®      +1 (  ) =   ®       (  ) −         (  )        (  ) − (1 −   )        (  )       +1 (  )
                                              ®
                                                               ®
                                          ¤
                                                         ®
                                    −       (  (  )        (  ) +   (  )   1 (  ,         (  )) +   (  )  (  )  ®       (  ))
                                                ¤
                                                    ®
                                                                ®
                                                                       ®
                                    − (1 −   )      (  (  )       +1 (  ) +   (  )   1 (  ,        +1 (  )) +   (  )  (  )  ®      +1 (  ))  (23)
               Let us define the operator       ,       ,       :       [0,  ] →       [0,  ] as follows:
                                            ®
                                         ®
                                      ®
                                 
                                  ®               ®        ¤   ®           ®  ®
                                       ( ®   )(  ) =         (  )  (  ) +         (  )  (  ) +         (  )   1 (  (  ),   )
                                 
                                  
                                   ®                               −1       ®                         (24)
                                        +1 ( ®   )(  ) = [   + (1 −   )        (  )  (  )] (1 −   )     +1 ( ®   )(  )
                                 
                                 
                                  ®                               −1 ®
                                       ( ®   )(  ) = −[   + (1 −   )        (  )  (  )]         ( ®   )(  )
                                 
   96   97   98   99   100   101   102   103   104   105   106