Page 45 - Read Online
P. 45

Page 514                          Liu et al. Intell Robot 2024;4(4):503-23  I http://dx.doi.org/10.20517/ir.2024.29

                    Table 2. Comparison with existing methods in terms of #Param, FLOPs, FPS, maxF, avgF, MAE, and S in general scenarios
                         #Param  FLOPs           DUTS-TE             DUT-OMRON               ECSSD
                  Methods            FPS
                           (M)   (G)     maxF↑  avgF↑  MAE↓  S↑  maxF↑  avgF↑  MAE↓  S↑  maxF↑  avgF↑  MAE↓  S↑
                 Heavyweight method (#Param > 10 M)
                  CPD [51]  47.85  59.5  42  0.861  0.805  0.043  0.866  0.794  0.747  0.056  0.818  0.930  0.917  0.037  0.905
                 U2Net [52]  44.02  58.8  45  0.873  0.792  0.045  0.874  0.823  0.761  0.055  0.847  0.951  0.892  0.033  0.928
                  UCF [53]  29.47  61.4  12  0.772  0.631  0.112  0.782  0.730  0.621  0.120  0.760  0.901  0.844  0.069  0.883
                 Amulet [25]  33.15  45.3  10  0.778  0.678  0.085  0.804  0.743  0.647  0.098  0.781  0.913  0.868  0.059  0.894
                  DSS [54]  62.23  114.6  7  0.825  0.720  0.056  0.826  0.781  0.656  0.066  0.790  0.921  0.842  0.056  0.879
                 PiCANet [13]  32.85  19.7  5  0.851  0.759  0.051  0.869  0.794  0.717  0.065  0.832  0.931  0.886  0.046  0.917
                 BASNet [55]  87.06  127.3  36  0.859  0.791  0.048  0.866  0.805  0.756  0.057  0.836  0.938  0.880  0.037  0.916
                 PoolNet [56]  53.63  123.4  39  0.866  0.819  0.043  0.875  0.791  0.752  0.057  0.829  0.934  0.919  0.048  0.909
                 MINet [14]  162.38  87.1  43  0.877  0.823  0.039  0.875  0.794  0.741  0.057  0.822  0.943  0.922  0.036  0.919
                  VST [57]  44.48  23.2  40  0.877  0.818  0.037  0.896  0.800  0.756  0.058  0.850  0.944  0.920  0.033  0.932
                 PFSNet [58]  31.18  37.6  44  0.898  0.846  0.036  0.890  0.823  0.774  0.055  0.852  0.952  0.932  0.031  0.927
                  ICON [59]  33.09  20.9  57  0.892  0.838  0.037  0.888  0.825  0.772  0.057  0.844  0.950  0.928  0.032  0.929
                 MENet [60]  -   -    45  0.912  0.893  0.028  0.905  0.834  0.818  0.045  0.850  0.955  0.942  0.031  0.928
                 TSERNet [61]  189.64  203.6  35  0.861  0.798  0.046  0.864  0.818  0.768  0.056  0.837  0.945  0.922  0.031  0.930
                 A3Net [62]  17.00  34.1  46  0.843  0.769  0.052  0.863  0.801  0.739  0.062  0.831  0.937  0.913  0.045  0.912
                 Avg-heavy  62.00  72.6  34  0.856  0.785  0.051  0.863  0.797  0.735  0.064  0.825  0.936  0.902  0.042  0.914
                 Lightweight method (#Param <= 10 M)
                 HVPNet [16]  1.24  1.1  55  0.839  0.749  0.058  0.849  0.799  0.721  0.065  0.831  0.925  0.889  0.052  0.904
                 SAMNet [17]  1.33  0.5  37  0.835  0.745  0.058  0.849  0.797  0.717  0.065  0.830  0.925  0.891  0.050  0.907
                 CSNet [15]  0.14  1.5  48  0.819  0.687  0.074  -  0.792  0.675  0.081  -  0.916  0.844  0.065  -
                   Ours   2.29   1.5  62  0.845  0.773  0.054  0.866  0.804  0.742  0.061  0.833  0.934  0.907  0.047  0.913
                         #Param  FLOPs           DUTS-TE             DUT-OMRON               ECSSD
                  Methods  (M)   (G)  FPS  maxF↑  avgF↑  MAE↓  S↑  maxF↑  avgF↑  MAE↓  S↑  maxF↑  avgF↑  MAE↓  S↑
                 Heavyweight method (#Param > 10 M)
                  CPD [51]  47.85  59.5  42  0.866  0.820  0.071  0.847  0.924  0.891  0.034  0.904  0.848  0.740  0.113  0.765
                 U2Net [52]  44.02  58.8  45  0.859  0.770  0.074  0.845  0.935  0.896  0.031  0.916  0.861  0.769  0.106  0.789
                  UCF [53]  29.47  61.4  12  0.757  0.726  0.116  0.806  0.888  0.823  0.062  0.875  0.805  0.737  0.148  0.763
                 Amulet [25]  33.15  45.3  10  0.806  0.757  0.100  0.818  0.897  0.841  0.051  0.886  0.795  0.741  0.144  0.755
                  DSS [54]  62.23  114.6  7  0.831  0.740  0.101  0.820  0.916  0.844  0.041  0.881  0.846  0.747  0.122  0.746
                 PiCANet [13]  32.85  19.7  5  0.880  0.792  0.076  0.854  0.921  0.870  0.043  0.904  0.855  0.785  0.103  0.793
                 BASNet [55]  87.06  127.3  36  0.854  0.771  0.076  0.838  0.928  0.896  0.032  0.909  0.849  0.744  0.112  0.772
                 PoolNet [56]  53.63  123.4  39  0.855  0.826  0.065  0.867  0.925  0.903  0.037  0.908  0.863  0.758  0.111  0.781
                 MINet [14]  162.38  87.1  43  0.882  0.843  0.065  0.855  0.932  0.906  0.030  0.914  -  -  -  -
                  VST [57]  44.48  23.2  40  0.850  0.829  0.061  0.873  0.937  0.900  0.029  0.928  0.866  0.833  0.065  0.854
                 PFSNet [58]  31.18  37.6  44  0.881  0.837  0.063  0.876  0.943  0.919  0.026  0.933  -  -  -  -
                  ICON [59]  33.09  20.9  57  0.876  0.833  0.064  0.861  0.940  0.910  0.029  0.920  0.879  0.804  0.084  0.824
                 MENet [60]  -   -    45  0.890  0.870  0.054  0.872  0.948  0.932  0.023  0.927  0.878  0.868  0.087  0.809
                 TSERNet [61]  189.64  203.6  35  0.857  0.782  0.062  0.840  0.930  0.904  0.036  0.910  0.850  0.746  0.109  0.775
                 A3Net [62]  17.00  34.1  46  0.844  0.791  0.089  0.831  0.920  0.881  0.042  0.903  0.843  0.787  0.120  0.765
                 Avg-heavy  62.00  72.6  34  0.853  0.799  0.076  0.847  0.926  0.888  0.036  0.908  0.849  0.774  0.110  0.784
                 Lightweight method (#Param <= 10 M)
                 HVPNet [16]  1.24  1.1  55  0.826  0.784  0.089  0.830  0.915  0.872  0.045  0.899  0.826  0.779  0.122  0.765
                 SAMNet [17]  1.33  0.5  37  0.812  0.778  0.092  0.826  0.915  0.871  0.045  0.898  0.833  0.780  0.124  0.762
                 CSNet [15]  0.14  1.5  48  0.835  0.723  0.103  -  0.899  0.840  0.059  -  0.825  0.724  0.137  -
                   Ours   2.29   1.5  62  0.847  0.801  0.084  0.833  0.919  0.889  0.044  0.901  0.845  0.796  0.117  0.767
                 The larger the mF and S, the better, the smaller the MAE, the better, and Avg-heavy represents the average of each metric of
                 all heavyweight methods. The best lightweight methods are in bold, and the underline indicates the metrics where SANet is better than
                 Avg-heavy. FLOPs: Floating-point operations; FPS: frames per second; MAE: mean absolute error.



               4.2. Performance analysis
               Inthissection, wecompareSANetwitheighteentypicalSODmethods, includingfifteenheavyweightmethods
               and three lightweight state-of-the-art methods. This paper uses the same method to evaluate the detection
               results of related models.


               4.2.1 Comparison with heavyweight SOD methods in general scenarios
               Table 2 shows the evaluation results of SANet and existing state-of-the-art SOD methods in terms of #Param,
               FLOPs, FPS, maxF, avgF, MAE, and S. From Table 2, we can see that SANet can achieve the performance of
               general heavyweight methods in the four evaluation metrics of maxF, avgF, MAE, and S. Especially in the
               challenging DUT-OMRON dataset, the four performance metrics all exceed the average level of heavyweight
               methods, with maxF, avgF, and S increase by 0.88%, 0.95%, and 0.97%, respectively, and MAE reduced by
               4.92%. In terms of efficiency metrics, SANet has reduced parameters by 96.31%, reduced FLOPs by 97.93%,
               and increased FPS by 82.35% compared to the average level of heavyweight methods.
   40   41   42   43   44   45   46   47   48   49   50