Page 18 - Read Online
P. 18
Page 14 of 14 Zhuang et al. Energy Mater. 2025, 5, 500015 https://dx.doi.org/10.20517/energymater.2024.90
40. Luo, J.; Zhang, J.; Wang, A.; et al. Influence of particle size and sintering aid on sinterability and conductivity of BaZr Ce Y O
0.2
3-δ
0.1
0.7
electrolyte. Int. J. Hydrogen. Energy. 2024, 56, 871-9. DOI
41. Huang, Z.; Yang, Y.; Lv, H.; et al. Large-area anode-supported protonic ceramic fuel cells combining with multilayer-tape casting and
hot-pressing lamination technology. J. Eur. Ceram. Soc. 2023, 43, 428-37. DOI
2
42. Zhang, G.; Chen, T.; Guo, Z.; et al. A 10 × 10 cm protonic ceramic electrochemical hydrogen pump for efficient and durable
hydrogen purification. Chem. Eng. J. 2024, 495, 153521. DOI
43. Bai, H.; Chu, J.; Chen, T.; et al. PrBa Sr Co Fe O as air electrode for proton-conducting solid oxide cells. J. Power. Sources.
0.5 0.5 1.5 0.5 5+δ
2023, 574, 233162. DOI
44. Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. Correlation between thermal expansion and oxide ion
transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid. State. Ion. 2000, 138, 79-90. DOI
45. Duan, C.; Hook, D.; Chen, Y.; Tong, J.; O’hayre, R. Zr and Y co-doped perovskite as a stable, high performance cathode for solid
oxide fuel cells operating below 500 °C. Energy. Environ. Sci. 2017, 10, 176-82. DOI
46. Wang, Z.; Lv, P.; Yang, L.; et al. Ba La Fe Zn O cobalt-free perovskite as a triple-conducting cathode for proton-conducting
0.95 0.05 0.8 0.2 3-δ
solid oxide fuel cells. Ceram. Int. 2020, 46, 18216-23. DOI
47. Lv, X.; Chen, H.; Zhou, W.; Li, S.; Shao, Z. A CO -tolerant SrCo Fe Zr O cathode for proton-conducting solid oxide fuel cells.
2 0.8 0.15 0.05 3-δ
J. Mater. Chem. A. 2020, 8, 11292-301. DOI
48. Cao, D.; Zhou, M.; Yan, X.; Liu, Z.; Liu, J. High performance low-temperature tubular protonic ceramic fuel cells based on barium
cerate-zirconate electrolyte. Electrochem. Commun. 2021, 125, 106986. DOI
49. Zhou, C.; Wang, X.; Liu, D.; et al. New strategy for boosting cathodic performance of protonic ceramic fuel cells through
incorporating a superior hydronation second phase. Energy. Environ. Mater. 2024, 7, e12660. DOI
50. Zhang, Y.; Chen, Y.; Yan, M.; Chen, F. Reconstruction of relaxation time distribution from linear electrochemical impedance
spectroscopy. J. Power. Sources. 2015, 283, 464-77. DOI
51. Zhao, Y.; Zhang, K.; Wei, Z.; et al. Performance and distribution of relaxation times analysis of Ruddlesden-Popper oxide
Sr Fe Co Mo O as a potential cathode for protonic solid oxide fuel cells. Electrochim. Acta. 2020, 352, 136444. DOI
0.5
7-δ
0.2
3
1.3
52. Xia, J.; Wang, C.; Wang, X.; Bi, L.; Zhang, Y. A perspective on DRT applications for the analysis of solid oxide cell electrodes.
Electrochim. Acta. 2020, 349, 136328. DOI
53. Sumi, H.; Shimada, H.; Yamaguchi, Y.; Yamaguchi, T.; Fujishiro, Y. Degradation evaluation by distribution of relaxation times
analysis for microtubular solid oxide fuel cells. Electrochim. Acta. 2020, 339, 135913. DOI
54. Li, G.; Gou, Y.; Ren, R.; et al. Fluorinated Pr NiO as high-performance air electrode for tubular reversible protonic ceramic cells. J.
4+δ
2
Power. Sources. 2021, 508, 230343. DOI
55. Kuroha, T.; Yamauchi, K.; Mikami, Y.; et al. Effect of added Ni on defect structure and proton transport properties of indium-doped
barium zirconate. Int. J. Hydrogen. Energy. 2020, 45, 3123-31. DOI