Page 17 - Read Online
P. 17
Zhuang et al. Energy Mater. 2025, 5, 500015 https://dx.doi.org/10.20517/energymater.2024.90 Page 13 of 14
renewable energy conversion and storage. Renew. Sustain. Energy. Rev. 2019, 109, 606-18. DOI
11. Wang, N.; Tang, C.; Du, L.; et al. Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives.
Adv. Energy. Mater. 2022, 12, 2201882. DOI
12. Guo, S.; Jiang, L.; Li, Y.; et al. From electrolyte and electrode materials to large-area protonic ceramic fuel cells: a review. Adv. Funct.
Mater. 2024, 34, 2304729. DOI
13. Li, G.; Gou, Y.; Qiao, J.; Sun, W.; Wang, Z.; Sun, K. Recent progress of tubular solid oxide fuel cell: from materials to applications. J.
Power. Sources. 2020, 477, 228693. DOI
14. Chen, R.; Gao, Y.; Gao, J.; et al. From concept to commercialization: a review of tubular solid oxide fuel cell technology. J. Energy.
Chem. 2024, 97, 79-109. DOI
15. Zhang, X.; Jin, Y.; Li, D.; Xiong, Y. A review on recent advances in micro-tubular solid oxide fuel cells. J. Power. Sources. 2021, 506,
230135. DOI
16. Lawlor, V. Review of the micro-tubular solid oxide fuel cell (Part II: cell design issues and research activities). J. Power. Sources.
2013, 240, 421-41. DOI
17. Cui, D.; Cheng, M. Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell. J. Power. Sources. 2009, 192,
400-7. DOI
18. Hou, M.; Zhu, F.; Liu, Y.; Chen, Y. A high-performance fuel electrode-supported tubular protonic ceramic electrochemical cell. J.
Eur. Ceram. Soc. 2023, 43, 6200-7. DOI
19. Tong, G.; Li, Y.; Wang, Z.; Tan, X. Batch fabrication of micro-tubular protonic ceramic fuel cells via a phase inversion-based co-
spinning/co-sintering technique. J. Power. Sources. 2023, 585, 233605. DOI
20. Liu, K.; Zhang, X.; Huang, Z.; et al. Enhancing the mass transfer of protonic ceramic fuel cells with open-straight pore structure via
phase inversion tape casting. Int. J. Hydrogen. Energy. 2024, 58, 924-30. DOI
21. Chen, C.; Liu, M.; Bai, Y.; Yang, L.; Xie, E.; Liu, M. Anode-supported tubular SOFCs based on BaZr Ce Y Yb O electrolyte
0.1 0.7 0.1 0.1 3-δ
fabricated by dip coating. Electrochem. Commun. 2011, 13, 615-8. DOI
22. Xiao, Y.; Wang, M.; Bao, D.; et al. Performance of fuel electrode-supported tubular protonic ceramic cells prepared through slip
casting and dip-coating methods. Catalysts 2023, 13, 182. DOI
23. Zou, M.; Conrad, J.; Sheridan, B.; et al. 3D printing enabled highly scalable tubular protonic ceramic fuel cells. ACS. Energy. Lett.
2023, 8, 3545-51. DOI
24. Pesce, A.; Hornés, A.; Núñez, M.; Morata, A.; Torrell, M.; Tarancón, A. 3D printing the next generation of enhanced solid oxide fuel
and electrolysis cells. J. Mater. Chem. A. 2020, 8, 16926-32. DOI
25. Suzuki, T.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Fabrication and characterization of micro tubular SOFCs for operation in the
intermediate temperature. J. Power. Sources. 2006, 160, 73-7. DOI
26. Min, S. H.; Song, R. H.; Lee, J. G.; et al. Fabrication of anode-supported tubular Ba(Zr Ce Y )O cell for intermediate
0.1 0.7 0.2 3-δ
temperature solid oxide fuel cells. Ceram. Int. 2014, 40, 1513-8. DOI
27. Yang, L.; Zuo, C.; Liu, M. High-performance anode-supported solid oxide fuel cells based on Ba(Zr Ce Y )O fabricated by a
0.1 0.7 0.2 3-δ
modified co-pressing process. J. Power. Sources. 2010, 195, 1845-8. DOI
28. Wang, M.; Wu, W.; Lin, Y.; et al. Improved solid-state reaction method for scaled-up synthesis of ceramic proton-conducting
electrolyte materials. ACS. Appl. Energy. Mater. 2023, 6, 8316-26. DOI
29. Liu, Z.; Song, Y.; Xiong, X.; et al. Sintering-induced cation displacement in protonic ceramics and way for its suppression. Nat.
Commun. 2023, 14, 7984. DOI PubMed PMC
30. Zhao, Z.; Tang, S.; Liu, X.; et al. Preparation, characterization and application of BaZr Ce Y O for a high-performance and stable
0.1 0.7 0.2 3-δ
proton ceramic electrochemical cell. Int. J. Hydrogen. Energy. 2023, 48, 39747-58. DOI
31. Zhou, C.; Shen, X.; Liu, D.; et al. Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. J. Power.
Sources. 2022, 530, 231321. DOI
32. Shin, J. S.; Saqib, M.; Jo, M.; et al. Degradation mechanisms of solid oxide fuel cells under various thermal cycling conditions. ACS.
Appl. Mater. Interfaces. 2021, 13, 49868-78. DOI
33. Chen, X.; Zhang, H.; Li, Y.; et al. Fabrication and performance of anode-supported proton conducting solid oxide fuel cells based on
BaZr Ce Y Yb O electrolyte by multi-layer aqueous-based co-tape casting. J. Power. Sources. 2021, 506, 229922. DOI
0.1 0.7 0.1 0.1 3-δ
34. Zhu, L.; O’hayre, R.; Sullivan, N. P. High performance tubular protonic ceramic fuel cells via highly-scalable extrusion process. Int. J.
Hydrogen. Energy. 2021, 46, 27784-92. DOI
35. Hou, M.; Pan, Y.; Chen, Y. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by
an internal catalyst layer. Sep. Purif. Technol. 2022, 297, 121483. DOI
36. Leng, Z.; Huang, Z.; Zhou, X.; et al. The effect of sintering aids on BaCe Zr Y Yb O as the electrolyte of proton-conducting
3-δ
0.1
0.1
0.1
0.7
solid oxide electrolysis cells. Int. J. Hydrogen. Energy. 2022, 47, 33861-71. DOI
37. Lyagaeva, J.; Vdovin, G.; Hakimova, L.; Medvedev, D.; Demin, A.; Tsiakaras, P. BaCe Zr Y Yb O proton-conducting
0.1
0.1
0.7
3-δ
0.1
electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta. 2017, 251, 554-61. DOI
38. Loureiro, F. J. A.; Nasani, N.; Reddy, G. S.; Munirathnam, N. R.; Fagg, D. P. A review on sintering technology of proton conducting
BaCeO -BaZrO perovskite oxide materials for protonic ceramic fuel cells. J. Power. Sources. 2019, 438, 226991. DOI
3
3
39. Yang, K.; Wang, J. X.; Xue, Y. J.; et al. Synthesis, sintering behavior and electrical properties of Ba(Zr Ce Y )O and
0.1 0.7 0.2 3-δ
Ba(Zr Ce Y Yb )O proton conductors. Ceram. Int. 2014, 40, 15073-81. DOI
0.7
0.1
0.1
3-δ
0.1