Page 17 - Read Online
P. 17

Zhuang et al. Energy Mater. 2025, 5, 500015  https://dx.doi.org/10.20517/energymater.2024.90  Page 13 of 14

                   renewable energy conversion and storage. Renew. Sustain. Energy. Rev. 2019, 109, 606-18.  DOI
               11.      Wang, N.; Tang, C.; Du, L.; et al. Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives.
                   Adv. Energy. Mater. 2022, 12, 2201882.  DOI
               12.      Guo, S.; Jiang, L.; Li, Y.; et al. From electrolyte and electrode materials to large-area protonic ceramic fuel cells: a review. Adv. Funct.
                   Mater. 2024, 34, 2304729.  DOI
               13.      Li, G.; Gou, Y.; Qiao, J.; Sun, W.; Wang, Z.; Sun, K. Recent progress of tubular solid oxide fuel cell: from materials to applications. J.
                   Power. Sources. 2020, 477, 228693.  DOI
               14.      Chen, R.; Gao, Y.; Gao, J.; et al. From concept to commercialization: a review of tubular solid oxide fuel cell technology. J. Energy.
                   Chem. 2024, 97, 79-109.  DOI
               15.      Zhang, X.; Jin, Y.; Li, D.; Xiong, Y. A review on recent advances in micro-tubular solid oxide fuel cells. J. Power. Sources. 2021, 506,
                   230135.  DOI
               16.      Lawlor, V. Review of the micro-tubular solid oxide fuel cell (Part II: cell design issues and research activities). J. Power. Sources.
                   2013, 240, 421-41.  DOI
               17.      Cui, D.; Cheng, M. Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell. J. Power. Sources. 2009, 192,
                   400-7.  DOI
               18.      Hou, M.; Zhu, F.; Liu, Y.; Chen, Y. A high-performance fuel electrode-supported tubular protonic ceramic electrochemical cell. J.
                   Eur. Ceram. Soc. 2023, 43, 6200-7.  DOI
               19.      Tong, G.; Li, Y.; Wang, Z.; Tan, X. Batch fabrication of micro-tubular protonic ceramic fuel cells via a phase inversion-based co-
                   spinning/co-sintering technique. J. Power. Sources. 2023, 585, 233605.  DOI
               20.      Liu, K.; Zhang, X.; Huang, Z.; et al. Enhancing the mass transfer of protonic ceramic fuel cells with open-straight pore structure via
                   phase inversion tape casting. Int. J. Hydrogen. Energy. 2024, 58, 924-30.  DOI
               21.      Chen, C.; Liu, M.; Bai, Y.; Yang, L.; Xie, E.; Liu, M. Anode-supported tubular SOFCs based on BaZr Ce Y Yb O  electrolyte
                                                                                      0.1  0.7  0.1  0.1  3-δ
                   fabricated by dip coating. Electrochem. Commun. 2011, 13, 615-8.  DOI
               22.      Xiao, Y.; Wang, M.; Bao, D.; et al. Performance of fuel electrode-supported tubular protonic ceramic cells prepared through slip
                   casting and dip-coating methods. Catalysts 2023, 13, 182.  DOI
               23.      Zou, M.; Conrad, J.; Sheridan, B.; et al. 3D printing enabled highly scalable tubular protonic ceramic fuel cells. ACS. Energy. Lett.
                   2023, 8, 3545-51.  DOI
               24.      Pesce, A.; Hornés, A.; Núñez, M.; Morata, A.; Torrell, M.; Tarancón, A. 3D printing the next generation of enhanced solid oxide fuel
                   and electrolysis cells. J. Mater. Chem. A. 2020, 8, 16926-32.  DOI
               25.      Suzuki, T.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Fabrication and characterization of micro tubular SOFCs for operation in the
                   intermediate temperature. J. Power. Sources. 2006, 160, 73-7.  DOI
               26.      Min, S. H.; Song, R. H.; Lee, J. G.; et al. Fabrication of anode-supported tubular Ba(Zr Ce Y )O  cell for intermediate
                                                                                 0.1  0.7  0.2  3-δ
                   temperature solid oxide fuel cells. Ceram. Int. 2014, 40, 1513-8.  DOI
               27.      Yang, L.; Zuo, C.; Liu, M. High-performance anode-supported solid oxide fuel cells based on Ba(Zr Ce Y )O  fabricated by a
                                                                                      0.1  0.7  0.2  3-δ
                   modified co-pressing process. J. Power. Sources. 2010, 195, 1845-8.  DOI
               28.      Wang, M.; Wu, W.; Lin, Y.; et al. Improved solid-state reaction method for scaled-up synthesis of ceramic proton-conducting
                   electrolyte materials. ACS. Appl. Energy. Mater. 2023, 6, 8316-26.  DOI
               29.      Liu, Z.; Song, Y.; Xiong, X.; et al. Sintering-induced cation displacement in protonic ceramics and way for its suppression. Nat.
                   Commun. 2023, 14, 7984.  DOI  PubMed  PMC
               30.      Zhao, Z.; Tang, S.; Liu, X.; et al. Preparation, characterization and application of BaZr Ce Y O  for a high-performance and stable
                                                                           0.1  0.7  0.2  3-δ
                   proton ceramic electrochemical cell. Int. J. Hydrogen. Energy. 2023, 48, 39747-58.  DOI
               31.      Zhou, C.; Shen, X.; Liu, D.; et al. Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. J. Power.
                   Sources. 2022, 530, 231321.  DOI
               32.      Shin, J. S.; Saqib, M.; Jo, M.; et al. Degradation mechanisms of solid oxide fuel cells under various thermal cycling conditions. ACS.
                   Appl. Mater. Interfaces. 2021, 13, 49868-78.  DOI
               33.      Chen, X.; Zhang, H.; Li, Y.; et al. Fabrication and performance of anode-supported proton conducting solid oxide fuel cells based on
                   BaZr Ce Y Yb O  electrolyte by multi-layer aqueous-based co-tape casting. J. Power. Sources. 2021, 506, 229922.  DOI
                      0.1  0.7  0.1  0.1  3-δ
               34.      Zhu, L.; O’hayre, R.; Sullivan, N. P. High performance tubular protonic ceramic fuel cells via highly-scalable extrusion process. Int. J.
                   Hydrogen. Energy. 2021, 46, 27784-92.  DOI
               35.      Hou, M.; Pan, Y.; Chen, Y. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by
                   an internal catalyst layer. Sep. Purif. Technol. 2022, 297, 121483.  DOI
               36.      Leng, Z.; Huang, Z.; Zhou, X.; et al. The effect of sintering aids on BaCe Zr Y Yb O  as the electrolyte of proton-conducting
                                                                               3-δ
                                                                         0.1
                                                                            0.1
                                                                      0.1
                                                                    0.7
                   solid oxide electrolysis cells. Int. J. Hydrogen. Energy. 2022, 47, 33861-71.  DOI
               37.      Lyagaeva, J.; Vdovin, G.; Hakimova, L.; Medvedev, D.; Demin, A.; Tsiakaras, P. BaCe Zr Y Yb O  proton-conducting
                                                                                     0.1
                                                                                   0.1
                                                                                0.7
                                                                                           3-δ
                                                                                         0.1
                   electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta. 2017, 251, 554-61.  DOI
               38.      Loureiro, F. J. A.; Nasani, N.; Reddy, G. S.; Munirathnam, N. R.; Fagg, D. P. A review on sintering technology of proton conducting
                   BaCeO -BaZrO  perovskite oxide materials for protonic ceramic fuel cells. J. Power. Sources. 2019, 438, 226991.  DOI
                        3
                             3
               39.      Yang, K.; Wang, J. X.; Xue, Y. J.; et al. Synthesis, sintering behavior and electrical properties of Ba(Zr Ce Y )O  and
                                                                                             0.1  0.7  0.2  3-δ
                   Ba(Zr Ce Y Yb )O  proton conductors. Ceram. Int. 2014, 40, 15073-81.  DOI
                          0.7
                       0.1
                            0.1
                                   3-δ
                                0.1
   12   13   14   15   16   17   18   19   20   21   22