Page 26 - Read Online
P. 26
Page 10 of 11 Wang et al. Energy Mater 2024;4:400031 https://dx.doi.org/10.20517/energymater.2023.103
2. Kang S, Cheng J, Gao W, Cui L. Toward safer lithium metal batteries: a review. Energy Mater 2023;3:300043. DOI
3. Ghazi ZA, Sun Z, Sun C, et al. Key aspects of lithium metal anodes for lithium metal batteries. Small 2019;15:e1900687. DOI
4. Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes. Chem Soc Rev 2020;49:3040-71. DOI
5. Jin C, Sheng O, Chen M, et al. Armed lithium metal anodes with functional skeletons. Mater Today Nano 2021;13:100103. DOI
6. Wang B, Xu T, Huang S, Kong D, Li X, Wang Y. Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal
batteries. J Mater Chem A 2021;9:6070-88. DOI
7. Wang C, Wang A, Ren L, et al. Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes. Adv Funct
Mater 2019;29:1905940. DOI
8. Zhao Y, Ye Y, Wu F, Li Y, Li L, Chen R. Anode interface engineering and architecture design for high-performance lithium-sulfur
batteries. Adv Mater 2019;31:e1806532. DOI
9. Peng HJ, Xu WT, Zhu L, et al. 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading
lithium - sulfur batteries. Adv Funct Mater 2016;26:6351-8. DOI
10. Shi J, Nguyen HD, Chen Z, et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast
charging lithium-metal batteries. Energy Mater 2023;3:300036. DOI
11. Zhong Y, Cao C, Tadé MO, Shao Z. Ionically and electronically conductive phases in a composite anode for high-rate and stable
lithium stripping and plating for solid-state lithium batteries. ACS Appl Mater Interfaces 2022;14:38786-94. DOI
12. Yue XY, Wang WW, Wang QC, et al. Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced
Li metal batteries. Energy Stor Mater 2019;21:180-9. DOI
13. Wang R, Shi F, He X, et al. Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes. Sci China Mater
2021;64:1087-94. DOI
14. Wang Z, Xue J, Liu Y, et al. Li Cu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Sci China Mater
x
2022;65:69-77. DOI
15. Chi SS, Liu Y, Song WL, Fan LZ, Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode.
Adv Funct Mater 2017;27:1700348. DOI
16. Eom JY, Choi SH, Kang JH, Eom GH, Moon J, Park MS. Rational design of a 3D Li-metal electrode for high-energy lithium batteries.
ACS Appl Energy Mater 2021;4:1936-41. DOI
17. Jia W, Wang Y, Qu S, et al. ZnF coated three dimensional Li-Ni composite anode for improved performance. J Materiomics
2
2019;5:176-84. DOI
18. Huang G, Chen S, Guo P, et al. In situ constructing lithiophilic NiF nanosheets on Ni foam current collector for stable lithium metal
x
anode via a succinct fluorination strategy. Chem Eng J 2020;395:125122. DOI
19. Wang Q, Yang C, Yang J, et al. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Stor
Mater 2018;15:249-56. DOI
20. Li X, Yang G, Zhang S, Wang Z, Chen L. Improved lithium deposition on silver plated carbon fiber paper. Nano Energy
2019;66:104144. DOI
21. Xiao J, Xiao N, Liu C, et al. In situ growing chromium oxynitride nanoparticles on carbon nanofibers to stabilize lithium deposition for
lithium metal anodes. Small 2020;16:2003827. DOI
22. Chen X, Lv Y, Shang M, Niu J. Ironing controllable lithium into lithiotropic carbon fiber fabric: a novel Li-metal anode with improved
cyclability and dendrite suppression. ACS Appl Mater Interfaces 2019;11:21584-92. DOI PubMed
23. Jia W, Chen T, Wang Y, et al. Porous equipotential body with heterogeneous nucleation sites: a novel 3D composite current collector
for lithium metal anode. Electrochim Acta 2019;309:460-8. DOI
24. Luo L, Li J, Yaghoobnejad Asl H, Manthiram A. A 3D lithiophilic Mo N-modified carbon nanofiber architecture for dendrite-free
2
lithium-metal anodes in a full cell. Adv Mater 2019;31:e1904537. DOI
25. Wang Z, Deng Q, Song Z, et al. Ultrathin Li-rich Li-Cu alloy anode capped with lithiophilic LiC headspace enabling stable cyclic
6
performance. J Colloid Interface Sci 2023;643:205-13. DOI
26. Niu J, Yang J, Channa AI, et al. Enhancing the water splitting performance via decorating Co O nanoarrays with ruthenium doping
3 4
and phosphorization. RSC Adv 2020;10:27235-41. DOI PubMed PMC
27. Wang Y, Shen Y, Du Z, et al. A lithium-carbon nanotube composite for stable lithium anodes. J Mater Chem A 2017;5:23434-9. DOI
28. Zheng ZJ, Ye H, Guo ZP. Recent progress in designing stable composite lithium anodes with improved wettability. Adv Sci
2020;7:2002212. DOI PubMed PMC
29. Wang SH, Yue J, Dong W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat Commun
2019;10:4930. DOI PubMed PMC
30. Wang J, Wang H, Xie J, et al. Fundamental study on the wetting property of liquid lithium. Energy Stor Mater 2018;14:345-50. DOI
31. Shin HJ, Abbas S, Kim J, Cho J, Ha HY. Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers
embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries. Chem Eng J 2023;464:142713. DOI
32. Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat
Nanotechnol 2019;14:594-601. DOI
33. Zhu R, Yang H, Fadillah L, et al. A lithiophilic carbon scroll as a Li metal host with low tortuosity design and “Dead Li” self-cleaning
capability. J Mater Chem A 2021;9:13332-43. DOI
34. Yue XY, Li XL, Wang WW, et al. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy