Page 183 - Read Online
P. 183

Li et al. Energy Mater 2023;3:300021  https://dx.doi.org/10.20517/energymater.2023.09  Page 15 of 16

                   cobalt-doping for highly efficient oxygen evolution reaction. ACS Nano 2017;11:12230-9.  DOI
               28.      Li Y, Zhang H, Jiang M, Zhang Q, He P, Sun X. 3D self-supported Fe-doped Ni P nanosheet arrays as bifunctional catalysts for
                                                                          2
                   overall water splitting. Adv Funct Mater 2017;27:1702513.  DOI
               29.      Ju M, Wang X, Long X, Yang S. Recent advances in transition metal based compound catalysts for water splitting from the
                   perspective of crystal engineering. CrystEngComm 2020;22:1531-40.  DOI
               30.      Yan Y, Wang P, Lin J, Cao J, Qi J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J
                   Energy Chem 2021;58:446-62.  DOI
               31.      Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J Mater
                   Chem A 2018;6:5574-9.  DOI
               32.      Yu L, Zhou H, Sun J, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for
                   overall water splitting. Energy Environ Sci 2017;10:1820-7.  DOI
               33.      Hong Y, Kim KM, Ryu JH, et al. Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water
                   oxidation electrocatalysts. Adv Funct Mater 2020;30:2004330.  DOI
               34.      Huang K, Sun Y, Zhang Y, Wang X, Zhang W, Feng S. Hollow-structured metal oxides as oxygen-related catalysts. Adv Mater
                   2019;31:e1801430.  DOI
               35.      Wang R, Liu B, You S, et al. Three-dimensional Ni Se  flowers integrated with ultrathin carbon layer with strong electronic
                                                       3  4
                   interactions for boosting oxygen reduction/evolution reactions. Chem Eng J 2022;430:132720.  DOI
               36.      Zheng X, Han X, Liu H, et al. Controllable synthesis of Ni Se (0.5 ≤ x ≤ 1) Nanocrystals for efficient rechargeable zinc-air batteries
                                                          x
                   and water splitting. ACS Appl Mater Interfaces 2018;10:13675-84.  DOI
               37.      Douka AI, Xu Y, Yang H, et al. A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient
                   oxygen electrocatalysis in rechargeable zinc-air batteries. Adv Mater 2020;32:e2002170.  DOI
               38.      Zhao C, Liu J, Li B, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries. Adv
                   Funct Mater 2020;30:2003619.  DOI
               39.      Chen D, Zhu J, Mu X, et al. Nitrogen-doped carbon coupled FeNi  intermetallic compound as advanced bifunctional electrocatalyst for
                                                             3
                   OER, ORR and zn-air batteries. Appl Catal B Environ 2020;268:118729.  DOI
               40.      Zhang M, Zhang J, Ran S, et al. A robust bifunctional catalyst for rechargeable Zn-air batteries: ultrathin NiFe-LDH nanowalls
                   vertically anchored on soybean-derived Fe-N-C matrix. Nano Res 2021;14:1175-86.  DOI
               41.      Jiao L, Wan G, Zhang R, Zhou H, Yu SH, Jiang HL. From metal-organic frameworks to single-atom Fe implanted N-doped porous
                   carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed 2018;57:8525-9.  DOI
               42.      Yu X, Lai S, Xin S, et al. Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction
                   reaction. Appl Catal B Environ 2021;280:119437.  DOI
               43.      Li G, Sheng K, Lei Y, et al. Facile synthesis of Fe C-dominated Fe/Fe C/FeN   multiphase nanocrystals embedded in nitrogen-
                                                     3            3    0.0324
                   modified graphitized carbon as efficient pH-universal catalyst for oxygen reduction reaction and zinc-air battery. Chem Eng J
                   2023;451:138823.  DOI
               44.      Li Y, Wang Z, Ali Z, et al. Monodisperse Fe O  spheres: large-scale controlled synthesis in the absence of surfactants and chemical
                                                 3
                                                  4
                   kinetic process. Sci China Mater 2019;62:1488-95.  DOI
               45.      Zhang J, Tian X, He T, et al. In situ formation of Ni Se  nanorod arrays as versatile electrocatalysts for electrochemical oxidation
                                                        4
                                                      3
                   reactions in hybrid water electrolysis. J Mater Chem A 2018;6:15653-8.  DOI
               46.      Li Z, Wang X, Li X, Zhang W. Reduced graphene oxide (rGO) coated porous nanosphere TiO @Se composite as cathode material for
                                                                                2
                   high-performance reversible Al-Se batteries. Chem Eng J 2020;400:126000.  DOI
               47.      Yan L, Xu Z, Liu X, et al. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon
                   plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting. Chem Eng J 2022;446:137049.  DOI
               48.      Gultom NS, Abdullah H, Hsu C, Kuo D. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and
                   overall water splitting by electrodepositing nickel hydroxide. Chem Eng J 2021;419:129608.  DOI
               49.      Meng H, Liu X, Chen X, et al. Hybridization of iron phthalocyanine and MoS  for high-efficiency and durable oxygen reduction
                                                                        2
                   reaction. J Energy Chem 2022;71:528-38.  DOI
               50.      Yuan J, Cheng X, Wang H, et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution
                   at ultra-high current densities. Nanomicro Lett 2020;12:104.  DOI  PubMed  PMC
               51.      Liu C, Han Y, Yao L, et al. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-
                   efficient oxygen evolution reaction. Small 2021;17:e2007334.  DOI
               52.      Mei Z, Cai S, Zhao G, et al. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination
                   environment of iron phthalocyanine. Chem Eng J 2022;430:132691.  DOI
               53.      Chen D, Chen X, Cui Z, et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based
                   framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem Eng J
                   2020;399:125718.  DOI
               54.      Yang J, Tao J, Isomura T, Yanagi H, Moriguchi I, Nakashima N. A comparative study of iron phthalocyanine electrocatalysts
                   supported on different nanocarbons for oxygen reduction reaction. Carbon 2019;145:565-71.  DOI
               55.      Yin Z, Liu X, Cui M, et al. Template synthesis of molybdenum-doped NiFe-layered double hydroxide nanotube as high efficiency
                   electrocatalyst for oxygen evolution reaction. Mater Today Sustain 2022;17:100101.  DOI
   178   179   180   181   182   183   184   185   186   187   188