Page 182 - Read Online
P. 182
Page 14 of 16 Li et al. Energy Mater 2023;3:300021 https://dx.doi.org/10.20517/energymater.2023.09
Copyright
© The Author(s) 2023.
REFERENCES
1. Sekhon SS, Lee J, Park J. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J
Energy Chem 2022;65:149-72. DOI
2. Lyu D, Yao S, Ali A, Tian ZQ, Tsiakaras P, Shen PK. N, S codoped carbon matrix-encapsulated Co S nanoparticles as a highly
9 8
efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv Energy Mater 2021;11:2101249.
DOI
3. Zhang H, Zhao M, Liu H, et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state
rechargeable Zn-air batteries. Nano Lett 2021;21:2255-64. DOI
4. Yang H, Gao S, Rao D, Yan X. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN and adjacent
4
metallic cobalt sites for rechargeable Zn-air batteries. Energy Stor Mater 2022;46:553-62. DOI
5. Wang X, Raghupathy RKM, Querebillo CJ, et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for
electrocatalytic oxygen reactions. Adv Mater 2021;33:e2008752. DOI
6. Ramakrishnan S, Velusamy DB, Sengodan S, et al. Rational design of multifunctional electrocatalyst: an approach towards efficient
overall water splitting and rechargeable flexible solid-state zinc-air battery. Appl Catal B Environ 2022;300:120752. DOI
7. Arafat Y, Azhar MR, Zhong Y, Abid HR, Tadé MO, Shao Z. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional
oxygen electrocatalysts and their application in zinc-air batteries. Adv Energy Mater 2021;11:2100514. DOI
8. Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution
electrocatalysts. Chem Soc Rev 2021;50:7745-78. DOI
9. Zhu Y, Song L, Song N, Li M, Wang C, Lu X. Bifunctional and efficient CoS -C@MoS core-shell nanofiber electrocatalyst for water
2 2
splitting. ACS Sustain Chem Eng 2019;7:2899-905. DOI
10. Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, et al. An efficient and durable trifunctional electrocatalyst for zinc-air batteries
driven overall water splitting. Appl Catal B Environ 2021;297:120405. DOI
11. Wang S, Zhang L, Li X, et al. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a
wide pH range. Nano Res 2017;10:415-25. DOI
12. Ge Y, Dong P, Craig SR, Ajayan PM, Ye M, Shen J. Transforming nickel hydroxide into 3D prussian blue analogue array to obtain
Ni P/Fe P for efficient hydrogen evolution reaction. Adv Energy Mater 2018;8:1800484. DOI
2 2
13. Xu S, Wang M, Saranya G, et al. Pressure-driven catalyst synthesis of Co-doped Fe C@Carbon nano-onions for efficient oxygen
3
evolution reaction. Appl Catal B Environ 2020;268:118385. DOI
14. Li M, Zhu Y, Wang H, Wang C, Pinna N, Lu X. Ni strongly coupled with Mo C encapsulated in nitrogen-doped carbon nanofibers as
2
robust bifunctional catalyst for overall water splitting. Adv Energy Mater 2019;9:1803185. DOI
15. Lv Y, Batool A, Wei Y, et al. Homogeneously distributed NiFe alloy nanoparticles on 3D carbon fiber network as a bifunctional
electrocatalyst for overall water splitting. ChemElectroChem 2019;6:2497-502. DOI
16. Dionigi F, Zhu J, Zeng Z, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3D-transition metal layered double
hydroxides. Angew Chem Int Ed 2021;60:14446-57. DOI PubMed PMC
17. Wang Z, Liu W, Hu Y, et al. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the
oxidation of water and urea. Appl Catal B Environ 2020;272:118959. DOI
18. Liu S, Jiang Y, Yang M, et al. Highly conductive and metallic cobalt-nickel selenide nanorods supported on Ni foam as an efficient
electrocatalyst for alkaline water splitting. Nanoscale 2019;11:7959-66. DOI
19. Kumar RS, Prabhakaran S, Ramakrishnan S, et al. Developing outstanding bifunctional electrocatalysts for rechargeable Zn-air
batteries using high-purity spinel-type ZnCo Se nanoparticles. Small 2023:e2207096. DOI
2 4
20. Lai C, Gong M, Zhou Y, et al. Sulphur modulated Ni FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air
3
battery performance. Appl Catal B Environ 2020;274:119086. DOI
21. Shi G, Yu C, Fan Z, Li J, Yuan M. Graphdiyne-supported NiFe layered double hydroxide nanosheets as functional electrocatalysts for
oxygen evolution. ACS Appl Mater Interfaces 2019;11:2662-9. DOI
22. Yin P, Wu G, Wang X, et al. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution
reaction. Nano Res 2021;14:4783-8. DOI
23. Sun H, Yang J, Li J, et al. Synergistic coupling of NiTe nanoarrays with RuO and NiFe-LDH layers for high-efficiency
2
electrochemical-/photovoltage-driven overall water splitting. Appl Catal B Environ 2020;272:118988. DOI
24. Lin J, Wang P, Wang H, et al. Defect-rich heterogeneous MoS /NiS nanosheets electrocatalysts for efficient overall water splitting.
2 2
Adv Sci 2019;6:1900246. DOI PubMed PMC
25. Chen F, Ji S, Liu Q, et al. Rational design of hierarchically core-shell structured Ni S @NiMoO nanowires for electrochemical energy
3 2 4
storage. Small 2018;14:e1800791. DOI
26. Liu H, Ma X, Rao Y, et al. Heteromorphic NiCo S /Ni S /Ni foam as a self-standing electrode for hydrogen evolution reaction in
2 4 3 2
alkaline solution. ACS Appl Mater Interfaces 2018;10:10890-7. DOI
27. Li Q, Wang X, Tang K, Wang M, Wang C, Yan C. Electronic modulation of electrocatalytically active center of Cu S nanodisks by
7 4