Page 152 - Read Online
P. 152

Zhang et al. Energy Mater 2023;3:300008  https://dx.doi.org/10.20517/energymater.2022.71  Page 13 of 13

               26.      Peng J, Zhang B, Hua W, et al. A disordered Rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan.
                   Angew Chem Int Ed 2023;62:e202215865.  DOI
               27.      Hu J, Tao H, Chen M, et al. Interstitial water improves structural stability of iron hexacyanoferrate for high-performance sodium-ion
                   batteries. ACS Appl Mater Interfaces 2022;14:12234-42.  DOI
               28.      Wang W, Gang Y, Peng J, et al. Effect of eliminating water in prussian blue cathode for sodium-ion batteries. Adv Funct Mater
                   2022;32:2111727.  DOI
               29.      Bhatt P, Thakur N, Mukadam MD, et al. Evidence for the existence of oxygen clustering and understanding of structural disorder in
                   prussian blue analogues molecular magnet M [Cr(CN) ]·zH O (M = Fe and Co): reverse monte carlo simulation and neutron
                                                  1.5
                                                         6
                                                             2
                   diffraction study. J Phys Chem C 2013;117:2676-87.  DOI
               30.      Wardecki D, Ojwang DO, Grins J, et al. Neutron diffraction and EXAFS studies of K  Cu[Fe(CN) ] ·nH O. Cryst Growth Des
                                                                             2x/3     6 2/3  2
                   2017;17:1285-92.  DOI
               31.      Oumellal Y, Delpuech N, Mazouzi D, et al. The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries.
                   J Mater Chem 2011;21:6201-8.  DOI
               32.      Liu W, Yang M, Wu H, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem
                   Solid-State Lett 2005;8:A100-3.  DOI
               33.      Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558-61.  DOI
               34.      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.  DOI
               35.      Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-68.  DOI
               36.      Chadi DJ. Special points for Brillouin-zone integrations. Phys Rev B 1977;16:1746-47.  DOI
               37.      Jain A, Hautier G, Ong SP, et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 2011;84:045115.  DOI
               38.      Smidstrup  S,  Pedersen  A,  Stokbro  K,  et  al.  Improved  initial  guess  for  minimum  energy  path  calculations.  J  Chem  Phys
                   2014;140:214106.  DOI
               39.      Xu Y, Wan J, Huang L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for na-ion
                   batteries. Adv Energy Mater 2019;9:1803158.  DOI
               40.      Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 1967;22:151-2.  DOI
               41.      Loopstra BO, Rietveld HM. Further refinement of the structure of WO. Acta Cryst 1969;B25:1420-1.  DOI
               42.      Feng Z, Hou Q, Zheng Y, et al. Method of artificial intelligence algorithm to improve the automation level of Rietveld refinement.
                   Comp Mater Sci 2019;156:310-4.  DOI
               43.      Cui X, Feng Z, Jin Y, et al. AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on
                   FullProf. J Appl Cryst 2015;48:1581-6.  DOI
               44.      McCusker LB, Von Dreele RB, Cox DE, et al. Rietveld refinement guidelines. J Appl Cryst 1999;32:36-50.  DOI
               45.      Toby BH. R factors in Rietveld analysis: how good is good enough? Powder Diffr 2006;21:67-70.  DOI
                                                   +
               46.      Peng J, Ou M, Yi H, et al. Defect-free-induced Na  disordering in electrode materials. Energy Environ Sci 2021;14:3130-40.  DOI
                                                                                +
               47.      Takachi M, Matsuda T, Moritomo Y. Cobalt hexacyanoferrate as cathode material for Na secondary battery. Appl Phys Express
                   2013;6:025802.  DOI
               48.      Li W, Zhang F, Xiang X, et al. Electrochemical properties and redox mechanism of Na Ni Co [Fe(CN) ] Nanocrystallites as high-
                                                                                 0.6
                                                                            2
                                                                              0.4
                                                                                        6
                   capacity cathode for aqueous sodium-ion batteries. J Phys Chem C 2017;121:27805-12.  DOI
               49.      Luo D, Lei P, Tian G, et al. Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue
                   cathode in a NaSO CF  electrolyte for aqueous sodium-ion batteries. J Phys Chem C 2020;124:5958-65.  DOI
                               3  3
               50.      Fang D, He F, Xie J, et al. Calibration of binding energy positions with C1s for XPS results. J Wuhan Univ Technol-Mat Sci Ed
                   2020;35:711-8.  DOI
               51.      Quan J, Xu E, Zhu H, et al. A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode
                   for sodium-ion batteries. Phys Chem Chem Phys 2021;23:2491-99.  DOI
   147   148   149   150   151   152   153   154   155   156   157