Page 151 - Read Online
P. 151
Page 12 of 13 Zhang et al. Energy Mater 2023;3:300008 https://dx.doi.org/10.20517/energymater.2022.71
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Evarts EC. Lithium batteries: to the limits of lithium. Nature 2015;526:S93-5. DOI
2. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29. DOI
3. Qian J, Wu C, Cao Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater
2018;8:1702619. DOI
4. Fang Y, Luan D, Lou XW. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv Mater 2020;32:e2002976.
DOI
5. Li Y, Yang Y, Lu Y, et al. Ultralow-concentration electrolyte for na-ion batteries. ACS Energy Lett 2020;5:1156-8. DOI
6. Piernas Muñoz MJ, Castillo Martínez E. Electrochemical performance of prussian blue and analogues in aqueous rechargeable
batteries. In Prussian Blue Based Batteries; 2018, pp. 23-44. DOI
7. Wessells CD, Peddada SV, Huggins RA, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion
batteries. Nano Lett 2011;11:5421-5. DOI
8. Peng J, Gao Y, Zhang H, et al. Ball milling solid-state synthesis of highly crystalline prussian blue analogue Na -xMnFe(CN)
2 6
cathodes for all-climate sodium-ion batteries. Angew Chem Int Ed 2022;61:e202205867. DOI
9. Imanishi N, Morikawa T, Kondo J, et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium
secondary battery. J Power Sources 1999;79:215-9. DOI
10. Pramudita JC, Schmid S, Godfrey T, et al. Sodium uptake in cell construction and subsequent in operando electrode behaviour of
Prussian blue analogues, Fe[Fe(CN) ] ·yH O and FeCo(CN) . Phys Chem Chem Phys 2014;16:24178-87. DOI
6 (1-x) 2 6
11. Peng J, Zhang W, Liu Q, et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv Mater
2022;34:2108384. DOI
12. Wu X, Wu C, Wei C, et al. Highly crystallized Na CoFe(CN) with suppressed lattice defects as superior cathode material for sodium-
2 6
ion batteries. ACS Appl Mater Interfaces 2016;8:5393-9. DOI
13. Shang Y, Li X, Song J, et al. Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing jahn-teller distortion for
ultrastable sodium storage. Chem 2020;6:1804-18. DOI
14. Jiang M, Hou Z, Wang J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy
storage. Nano Energy 2022;102:107708. DOI
15. Peng J, Wang J, Yi H, et al. A Dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv
Energy Mater 2018;8:1702856. DOI
16. Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries.
Nat Commun 2020;11:980. DOI
17. Gong W, Wan M, Zeng R, et al. Ultrafine prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Technol
2019;7:1900108. DOI
18. Han B, Zhang D, Liu X, et al. Ordered assembly of potassium cobalt hexacyanoferrate hollow multivoid nanocuboid arrays for high-
performance aqueous K-ion batteries towards all-climate energy storage. J Mater Chem A 2022;10:13508-18. DOI
19. Tang Y, Li W, Feng P, et al. Investigation of alkali-ion (Li, Na and K) intercalation in manganese hexacyanoferrate K xMnFe(CN) as
6
cathode material. Chem Eng J 2020;396:125269. DOI
20. Shao T, Li C, Liu C, et al. Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J Mater
Chem A 2019;7:1749-55. DOI
21. Feng F, Chen S, Zhao S, et al. Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the
inhibition of Mn ions dissolution for sodium-ion batteries. Chem Eng J 2021;411:128518. DOI
22. Gebert F, Cortie DL, Bouwer JC, et al. Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for
sodium-ion batteries. Angew Chem Int Ed 2021;60:18519-26. DOI
23. Qiao Y, Wei G, Cui J, et al. Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion
batteries. Chem Commun 2019;55:549-52. DOI
24. Kim J, Yi SH, Li L, et al. Enhanced stability and rate performance of zinc-doped cobalt hexacyanoferrate (CoZnHCF) by the limited
crystal growth and reduced distortion. J Energy Chem 2022;69:649-58. DOI
25. Wang B, Han Y, Chen Y, et al. Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-
based cathodes. J Mater Chem A 2018;6:8947-54. DOI