Page 14 - Read Online
P. 14

Page 10 of 11            Chen et al. Energy Mater 2022;2:200033  https://dx.doi.org/10.20517/energymater.2022.36

               Financial support and sponsorship
               This work was supported by the Natural Science Foundation of China (Grant 21832004).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B
                   2004;108:17886-92.  DOI
               2.       Yu Y, Xia F, Wang C, et al. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for
                   oxygen reduction. Nano Res 2022;15:7868-76.  DOI
               3.       Lu R, Quan C, Zhang C, et al. Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen
                   reaction. Nano Res 2022;15:6067-75.  DOI
               4.       Jang I, Lee S, Jang J, Ahn M, Yoo SJ. Improved platinum-nickel nanoparticles with dopamine-derived carbon shells for proton
                   exchange membrane fuel cells. Intl J of Energy Res 2022;46:13602-12.  DOI
               5.       Sohn Y, Park JH, Kim P, Joo JB. Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction. Curr Appl Phys
                   2015;15:993-9.  DOI
               6.       Wu D, Yang Y, Dai C, Cheng D. Enhanced oxygen reduction activity of PtCu nanoparticles by morphology tuning and transition-
                   metal doping. Int J Hydrog Energy 2020;45:4427-34.  DOI
               7.       Garcia-cardona J, Sirés I, Alcaide F, Brillas E, Centellas F, Cabot PL. Electrochemical performance of carbon-supported Pt(Cu)
                   electrocatalysts for low-temperature fuel cells. Int J Hydrog Energy 2020;45:20582-93.  DOI
               8.       Pavlets A, Alekseenko A, Tabachkova NY, et al. A novel strategy for the synthesis of Pt–Cu uneven nanoparticles as an efficient
                   electrocatalyst toward oxygen reduction. Int J Hydrog Energy 2021;46:5355-68.  DOI
               9.       Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem
                   2010;2:454-60.  DOI  PubMed
               10.      Stephens IE, Bondarenko AS, Perez-Alonso FJ, et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface
                   alloying. J Am Chem Soc 2011;133:5485-91.  DOI  PubMed
               11.      Zhao J, Tu Z, Chan SH. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): a
                   review. J Power Sources 2021;488:229434.  DOI
               12.      Bigall NC, Herrmann AK, Vogel M, et al. Hydrogels and aerogels from noble metal nanoparticles. Angew Chem Int Ed Engl
                   2009;48:9731-4.  DOI  PubMed
               13.      Wen  D,  Herrmann  AK,  Borchardt  L,  et  al.  Controlling  the  growth  of  palladium  aerogels  with  high-performance  toward
                   bioelectrocatalytic oxidation of glucose. J Am Chem Soc 2014;136:2727-30.  DOI  PubMed
               14.      Du R, Hu Y, Hübner R, et al. Specific ion effects directed noble metal aerogels: versatile manipulation for electrocatalysis and beyond.
                   Sci Adv 2019;5:eaaw4590.  DOI  PubMed  PMC
               15.      Ranmohotti KGS, Gao X, Arachchige IU. Salt-mediated self-assembly of metal nanoshells into monolithic aerogel frameworks. Chem
                   Mater 2013;25:3528-34.  DOI
               16.      Gao X, Esteves RJ, Luong TT, Jaini R, Arachchige IU. Oxidation-induced self-assembly of Ag nanoshells into transparent and opaque
                   Ag hydrogels and aerogels. J Am Chem Soc 2014;136:7993-8002.  DOI  PubMed
               17.      Gao X, Esteves RJ, Nahar L, Nowaczyk J, Arachchige IU. Direct cross-linking of Au/Ag Alloy nanoparticles into monolithic aerogels
                   for application in surface-enhanced raman scattering. ACS Appl Mater Interfaces 2016;8:13076-85.  DOI  PubMed
               18.      Nahar L, Farghaly AA, Esteves RJA, Arachchige IU. Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced
                   self-assembly into electrocatalytically active aerogel monoliths. Chem Mater 2017;29:7704-15.  DOI
               19.      Naskar S, Freytag A, Deutsch J, et al. Porous aerogels from shape-controlled metal nanoparticles directly from nonpolar colloidal
                   solution. Chem Mater 2017;29:9208-17.  DOI
               20.      Wen D, Liu W, Haubold D, et al. Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic
                   interfaces. ACS Nano 2016;10:2559-67.  DOI  PubMed  PMC
   9   10   11   12   13   14   15   16   17   18   19