Page 73 - Read Online
P. 73

Page 14 of 14                          Liu et al. Chem Synth 2023;3:24  https://dx.doi.org/10.20517/cs.2023.13

               33.      Deng M, Yang A, Ma J, et al. Enhanced catalytic performance of n-doped carbon sphere-supported pd nanoparticles by secondary
                   nitrogen source regulation for formic acid dehydrogenation. ACS Appl Mater Interfaces 2022;14:18550-60.  DOI
               34.      Ye W, Huang H, Zou W, Ge Y, Lu R, Zhang S. Controllable synthesis of supported PdAu nanoclusters and their electronic structure-
                   dependent catalytic activity in selective dehydrogenation of formic acid. ACS Appl Mater Interfaces 2021;13:34258-65.  DOI  PubMed
               35.      Zhao X, Dai P, Xu D, Tao X, Liu X, Ge Q. Ultrafine PdAg alloy nanoparticles anchored on NH -functionalized 2D/2D TiO
                                                                                      2                  2
                   nanosheet/rGO composite as efficient and reusable catalyst for hydrogen release from additive-free formic acid at room temperature. J
                   Energy Chem 2021;59:455-64.  DOI
               36.      Li SJ, Zhou YT, Kang X, et al. A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of
                   formic acid. Adv Mater 2019;31:e1806781.  DOI
               37.      Masuda S, Mori K, Futamura Y, Yamashita H. PdAg nanoparticles supported on functionalized mesoporous carbon: promotional
                   effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO . ACS Catal 2018;8:2277-85.  DOI
                                                                                   2
               38.      Ziaee MA, Zhong H, Cui C, Wang R. Additive-free hydrogen generation from formic acid boosted by amine-functionalized
                   imidazolium-based ionic polymers. ACS Sustainable Chem Eng 2018;6:10421-8.  DOI
               39.      Liu B, Yao H, Song W, et al. Ligand-free noble metal nanocluster catalysts on carbon supports via "soft" nitriding. J Am Chem Soc
                   2016;138:4718-21.  DOI  PubMed  PMC
               40.      Lv H, Wei R, Guo X, Sun L, Liu B. Synergistic catalysis of binary RuP nanoclusters on nitrogen-functionalized hollow mesoporous
                   carbon in hydrogen production from the hydrolysis of ammonia borane. J Phys Chem Lett 2021;12:696-703.  DOI  PubMed
               41.      Luo W, Zhao X, Cheng W, Zhang Y, Wang Y, Fan G. A simple and straightforward strategy for synthesis of N,P co-doped porous
                   carbon: an efficient support for Rh nanoparticles for dehydrogenation of ammonia borane and catalytic application. Nanoscale Adv
                   2020;2:1685-93.  DOI  PubMed  PMC
               42.      Yan JM, Li SJ, Yi SS, Wulan BR, Zheng WT, Jiang Q. Anchoring and upgrading ultrafine NiPd on room-temperature-synthesized
                   bifunctional NH -N-rGO toward low-cost and highly efficient catalysts for selective formic acid dehydrogenation. Adv Mater
                              2
                   2018;30:e1703038.  DOI  PubMed
               43.      Li L, Li Y, Ye Y, et al. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage.
                   ACS Nano 2021;15:6872-85.  DOI
               44.      Duan X, Cao F, Ding R, et al. Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC
                   cathode. Adv Energy Mater 2022;12:2103144.  DOI
               45.      Ye W, Pei W, Zhou S, et al. Controlling the synthesis of uniform electron-deficient Pd clusters for superior hydrogen production from
                   formic acid. J Mater Chem A 2019;7:10363-71.  DOI
               46.      Chang J, Wang G, Chang X, et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nat Commun
                   2023;14:1346.  DOI  PubMed  PMC
               47.      Zhao Y, Zhang X, Bodappa N, et al. Elucidating electrochemical CO  reduction reaction processes on Cu(hkl) single-crystal surfaces
                                                                2
                   by in situ Raman spectroscopy. Energy Environ Sci 2022;15:3968-77.  DOI
               48.      Shan W, Liu R, Zhao H, et al. In Situ surface-enhanced raman spectroscopic evidence on the origin of selectivity in CO
                                                                                                         2
                   electrocatalytic reduction. ACS Nano 2020;14:11363-72.  DOI  PubMed
               49.      Yu Z, Yang Y, Yang S, et al. Selective dehydrogenation of aqueous formic acid over multifunctional γ-Mo N catalysts at a
                                                                                               2
                   temperature lower than 100 ℃. Appl Catal B 2022;313:121445.  DOI
               50.      Zhu H, Wong RJ, Du X, et al. Synergistic effect of PtNi alloy loading on  TiB  to construct SMSI catalysing formic acid
                                                                           2
                   dehydrogenation. Sustain Energy Fuels 2022;6:5531-8.  DOI
               51.      Li Z, Yang X, Tsumori N, et al. Tandem nitrogen functionalization of porous carbon: toward immobilizing highly active palladium
                   nanoclusters for dehydrogenation of formic acid. ACS Catal 2017;7:2720-4.  DOI
   68   69   70   71   72   73   74   75   76   77   78