Page 72 - Read Online
P. 72
Liu et al. Chem Synth 2023;3:24 https://dx.doi.org/10.20517/cs.2023.13 Page 13 of 14
4. Xu R, Lu W, Toan S, et al. Thermocatalytic formic acid dehydrogenation: recent advances and emerging trends. J Mater Chem A
2021;9:24241-60. DOI
5. Qin X, Li H, Xie S, et al. Mechanistic analysis-guided Pd-based catalysts for efficient hydrogen production from formic acid
dehydrogenation. ACS Catal 2020;10:3921-32. DOI
6. Li X, Surkus AE, Rabeah J, et al. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew
Chem Int Ed Engl 2020;59:15849-54. DOI PubMed PMC
7. Cui Y, Zhao M, Zou Y, et al. Ultrasmall AuPd nanoclusters on amine-functionalized carbon blacks as high-performance bi-functional
catalysts for ethanol electrooxidation and formic acid dehydrogenation. J Energy Chem 2022;68:556-63. DOI
8. Wang H, Zhang B, Li X, Antonietti M, Chen J. Activating Pd nanoparticles on sol-gel prepared porous g-C N /SiO via enlarging the
3
2
4
Schottky barrier for efficient dehydrogenation of formic acid. Inorg Chem Front 2016;3:1124-9. DOI
9. Li R, Liu Z, Trinh QT, et al. Strong metal-support interaction for 2D materials: application in noble metal/TiB heterointerfaces and
2
their enhanced catalytic performance for formic acid dehydrogenation. Adv Mater 2021;33:e2101536. DOI PubMed
10. Zhang A, Xia J, Yao Q, Lu Z. Pd–WO heterostructures immobilized by MOFs-derived carbon cage for formic acid dehydrogenation.
x
Appl Catal B 2022;309:121278. DOI
11. Barlocco I, Capelli S, Lu X, et al. Disclosing the role of gold on palladium-gold alloyed supported catalysts in formic acid
decomposition. ChemCatChem 2021;13:4210-22. DOI
12. Wang Z, Liang S, Meng X, Mao S, Lian X, Wang Y. Ultrasmall PdAu alloy nanoparticles anchored on amine-functionalized
hierarchically porous carbon as additive-free catalysts for highly efficient dehydrogenation of formic acid. Appl Catal B
2021;291:120140. DOI
13. Guo B, Li Q, Lin J, et al. Bimetallic AuPd nanoparticles loaded on amine-functionalized porous boron nitride nanofibers for catalytic
dehydrogenation of formic acid. ACS Appl Nano Mater 2021;4:1849-57. DOI
14. Wang Z, Wang C, Mao S, Gong Y, Chen Y, Wang Y. Pd nanoparticles anchored on amino-functionalized hierarchically porous carbon
for efficient dehydrogenation of formic acid under ambient conditions. J Mater Chem A 2019;7:25791-5. DOI
15. Shao X, Miao X, Tian F, et al. Amine-functionalized hierarchically porous carbon supported Pd nanocatalysts for highly efficient H 2
generation from formic acid with fast-diffusion channels. J Energy Chem 2023;76:249-58. DOI
16. Zhong S, Tsumori N, Kitta M, Xu Q. Immobilizing palladium nanoparticles on boron-oxygen-functionalized carbon nanospheres
towards efficient hydrogen generation from formic acid. Nano Res 2019;12:2966-70. DOI
17. Deng M, Ma J, Liu Y, et al. Pd nanoparticles confined in pure Silicalite-2 zeolite with enhanced catalytic performance for the
dehydrogenation of formic acid at room temperature. Fuel 2023;333:126466. DOI
18. Ding R, Li D, Li Y, Yu J, Jia M, Xu J. Bimetallic PdAu nanoparticles in amine-containing metal–organic framework UiO-66 for
catalytic dehydrogenation of formic acid. ACS Appl Nano Mater 2021;4:4632-41. DOI
19. Gerber IC, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chem Rev 2020;120:1250-349.
DOI PubMed
20. Zhang J, Ma J, Choksi TS, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H O . J
2
2
Am Chem Soc 2022;144:2255-63. DOI PubMed
21. Lin G, Ju Q, Jin Y, et al. Suppressing dissolution of Pt-based electrocatalysts through the electronic metal-support interaction. Adv
Energy Mater 2021;11:2101050. DOI
22. Li Q, Wang X, Xie Z, et al. Polar bonds induced strong Pd-support electronic interaction drives remarkably enhanced oxygen
reduction activity and stability. Appl Catal B 2022;305:121020. DOI
23. Dong Z, Mukhtar A, Ludwig T, et al. Efficient Pd on carbon catalyst for ammonium formate dehydrogenation: Effect of surface
oxygen functional groups. Appl Catal B 2023;321:122015. DOI
24. Tang D, Wang T, Zhang W, Zhao Z, Zhang L, Qiao ZA. Liquid Na/K alloy interfacial synthesis of functional porous carbon at ambient
temperature. Angew Chem Int Ed Engl 2022;61:e202203967. DOI
25. Luo Y, Chen Y, Xue Y, et al. Electronic structure regulation of iron phthalocyanine induced by anchoring on heteroatom-doping
carbon sphere for efficient oxygen reduction reaction and Al-air battery. Small 2022;18:e2105594. DOI
26. Yang CL, Wang LN, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science
2021;374:459-64. DOI
27. Yu W, Huang H, Qin Y, et al. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to
achieve high-performance alkaline hydrogen evolution. Adv Energy Mater 2022;12:2200110. DOI
28. Yang Y, Huang H, Shen B, et al. Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a
highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg Chem Front 2020;7:700-8. DOI
29. Yuan J, Gan Y, Mou J, et al. Electrochemically induced amorphous and porous VOx /N-doped carbon spheres as a cathode for
advanced aqueous zinc-ion batteries. Inorg Chem Front 2023;10:984-90. DOI
30. Wang Q, Tsumori N, Kitta M, Xu Q. Fast dehydrogenation of formic acid over palladium nanoparticles immobilized in nitrogen-doped
hierarchically porous carbon. ACS Catal 2018;8:12041-5. DOI
31. Yu Y, Wang X, Liu C, Vladimir F, Ge J, Xing W. Surface interaction between Pd and nitrogen derived from hyperbranched polyamide
towards highly effective formic acid dehydrogenation. J Energy Chem 2020;40:212-6. DOI
32. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y. Dehydrogenation of formic acid at room temperature: boosting palladium
nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew Chem Int Ed Engl 2016;55:11849-53. DOI PubMed