Page 72 - Read Online
P. 72

Liu et al. Chem Synth 2023;3:24  https://dx.doi.org/10.20517/cs.2023.13         Page 13 of 14

               4.       Xu R, Lu W, Toan S, et al. Thermocatalytic formic acid dehydrogenation: recent advances and emerging trends. J Mater Chem A
                   2021;9:24241-60.  DOI
               5.       Qin X, Li H, Xie S, et al. Mechanistic analysis-guided Pd-based catalysts for efficient hydrogen production from formic acid
                   dehydrogenation. ACS Catal 2020;10:3921-32.  DOI
               6.       Li X, Surkus AE, Rabeah J, et al. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew
                   Chem Int Ed Engl 2020;59:15849-54.  DOI  PubMed  PMC
               7.       Cui Y, Zhao M, Zou Y, et al. Ultrasmall AuPd nanoclusters on amine-functionalized carbon blacks as high-performance bi-functional
                   catalysts for ethanol electrooxidation and formic acid dehydrogenation. J Energy Chem 2022;68:556-63.  DOI
               8.       Wang H, Zhang B, Li X, Antonietti M, Chen J. Activating Pd nanoparticles on sol-gel prepared porous g-C N /SiO via enlarging the
                                                                                         3
                                                                                              2
                                                                                           4
                   Schottky barrier for efficient dehydrogenation of formic acid. Inorg Chem Front 2016;3:1124-9.  DOI
               9.       Li R, Liu Z, Trinh QT, et al. Strong metal-support interaction for 2D materials: application in noble metal/TiB  heterointerfaces and
                                                                                            2
                   their enhanced catalytic performance for formic acid dehydrogenation. Adv Mater 2021;33:e2101536.  DOI  PubMed
               10.      Zhang A, Xia J, Yao Q, Lu Z. Pd–WO  heterostructures immobilized by MOFs-derived carbon cage for formic acid dehydrogenation.
                                            x
                   Appl Catal B 2022;309:121278.  DOI
               11.      Barlocco I, Capelli S, Lu X, et al. Disclosing the role of gold on palladium-gold alloyed supported catalysts in formic acid
                   decomposition. ChemCatChem 2021;13:4210-22.  DOI
               12.      Wang Z, Liang S, Meng X, Mao S, Lian X, Wang Y. Ultrasmall PdAu alloy nanoparticles anchored on amine-functionalized
                   hierarchically  porous  carbon  as  additive-free  catalysts  for  highly  efficient  dehydrogenation  of  formic  acid.  Appl  Catal  B
                   2021;291:120140.  DOI
               13.      Guo B, Li Q, Lin J, et al. Bimetallic AuPd nanoparticles loaded on amine-functionalized porous boron nitride nanofibers for catalytic
                   dehydrogenation of formic acid. ACS Appl Nano Mater 2021;4:1849-57.  DOI
               14.      Wang Z, Wang C, Mao S, Gong Y, Chen Y, Wang Y. Pd nanoparticles anchored on amino-functionalized hierarchically porous carbon
                   for efficient dehydrogenation of formic acid under ambient conditions. J Mater Chem A 2019;7:25791-5.  DOI
               15.      Shao X, Miao X, Tian F, et al. Amine-functionalized hierarchically porous carbon supported Pd nanocatalysts for highly efficient H   2
                   generation from formic acid with fast-diffusion channels. J Energy Chem 2023;76:249-58.  DOI
               16.      Zhong S, Tsumori N, Kitta M, Xu Q. Immobilizing palladium nanoparticles on boron-oxygen-functionalized carbon nanospheres
                   towards efficient hydrogen generation from formic acid. Nano Res 2019;12:2966-70.  DOI
               17.      Deng M, Ma J, Liu Y, et al. Pd nanoparticles confined in pure Silicalite-2 zeolite with enhanced catalytic performance for the
                   dehydrogenation of formic acid at room temperature. Fuel 2023;333:126466.  DOI
               18.      Ding R, Li D, Li Y, Yu J, Jia M, Xu J. Bimetallic PdAu nanoparticles in amine-containing metal–organic framework UiO-66 for
                   catalytic dehydrogenation of formic acid. ACS Appl Nano Mater 2021;4:4632-41.  DOI
               19.      Gerber IC, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chem Rev 2020;120:1250-349.
                   DOI  PubMed
               20.      Zhang J, Ma J, Choksi TS, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H O . J
                                                                                                      2
                                                                                                        2
                   Am Chem Soc 2022;144:2255-63.  DOI  PubMed
               21.      Lin G, Ju Q, Jin Y, et al. Suppressing dissolution of Pt-based electrocatalysts through the electronic metal-support interaction. Adv
                   Energy Mater 2021;11:2101050.  DOI
               22.      Li Q, Wang X, Xie Z, et al. Polar bonds induced strong Pd-support electronic interaction drives remarkably enhanced oxygen
                   reduction activity and stability. Appl Catal B 2022;305:121020.  DOI
               23.      Dong Z, Mukhtar A, Ludwig T, et al. Efficient Pd on carbon catalyst for ammonium formate dehydrogenation: Effect of surface
                   oxygen functional groups. Appl Catal B 2023;321:122015.  DOI
               24.      Tang D, Wang T, Zhang W, Zhao Z, Zhang L, Qiao ZA. Liquid Na/K alloy interfacial synthesis of functional porous carbon at ambient
                   temperature. Angew Chem Int Ed Engl 2022;61:e202203967.  DOI
               25.      Luo Y, Chen Y, Xue Y, et al. Electronic structure regulation of iron phthalocyanine induced by anchoring on heteroatom-doping
                   carbon sphere for efficient oxygen reduction reaction and Al-air battery. Small 2022;18:e2105594.  DOI
               26.      Yang CL, Wang LN, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science
                   2021;374:459-64.  DOI
               27.      Yu W, Huang H, Qin Y, et al. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to
                   achieve high-performance alkaline hydrogen evolution. Adv Energy Mater 2022;12:2200110.  DOI
               28.      Yang Y, Huang H, Shen B, et al. Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a
                   highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg Chem Front 2020;7:700-8.  DOI
               29.      Yuan J, Gan Y, Mou J, et al. Electrochemically induced amorphous and porous VOx /N-doped carbon spheres as a cathode for
                   advanced aqueous zinc-ion batteries. Inorg Chem Front 2023;10:984-90.  DOI
               30.      Wang Q, Tsumori N, Kitta M, Xu Q. Fast dehydrogenation of formic acid over palladium nanoparticles immobilized in nitrogen-doped
                   hierarchically porous carbon. ACS Catal 2018;8:12041-5.  DOI
               31.      Yu Y, Wang X, Liu C, Vladimir F, Ge J, Xing W. Surface interaction between Pd and nitrogen derived from hyperbranched polyamide
                   towards highly effective formic acid dehydrogenation. J Energy Chem 2020;40:212-6.  DOI
               32.      Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y. Dehydrogenation of formic acid at room temperature: boosting palladium
                   nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew Chem Int Ed Engl 2016;55:11849-53.  DOI  PubMed
   67   68   69   70   71   72   73   74   75   76   77