Page 64 - Read Online
P. 64
Page 16 of 17 Li et al. Chem Synth 2023;3:30 https://dx.doi.org/10.20517/cs.2023.16
43. Yang Q, Vaesen S, Vishnuvarthan M, et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic
combination of experimental and modelling tools. J Mater Chem 2012;22:10210. DOI
44. Wang J, Yang J, Krishna R, Yang T, Deng S. A versatile synthesis of metal-organic framework-derived porous carbons for CO 2
capture and gas separation. J Mater Chem A 2016;4:19095-106. DOI
45. Yang J, Wang J, Deng S, Li J. Improved synthesis of trigone trimer cluster metal organic framework MIL-100Al by a later entry of
methyl groups. Chem Commun 2016;52:725-8. DOI PubMed
46. Seoane B, Téllez C, Coronas J, Staudt C. NH -MIL-53(Al) and NH -MIL-101(Al) in sulfur-containing copolyimide mixed matrix
2 2
membranes for gas separation. Sep Purif Technol 2013;111:72-81. DOI
47. Perea-cachero A, Romero E, Téllez C, Coronas J. Retracted article: insight into the reversible structural crystalline-state transformation
from MIL-53(Al) to MIL-68(Al). Cryst Eng Comm 2018;20:402-6. DOI
48. García Márquez A, Demessence A, Platero-prats AE, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-
film elaboration. Eur J Inorg Chem 2012;2012:5165-74. DOI
49. Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H. Amorphous intermediate derivative from ZIF-67 and its outstanding
electrocatalytic activity. Small 2020;16:e1904252. DOI PubMed
50. Zhang X, Li H, Lv X, et al. Facile Synthesis of highly efficient amorphous Mn-MIL-100 catalysts: formation mechanism and structure
changes during application in CO oxidation. Chemistry 2018;24:8822-32. DOI
51. Zhou QY, Zhang Z, Cai JJ, et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a
highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 2020;71:104592. DOI
52. Chen B, He X, Yin F, et al. MO-Co@N-Doped Carbon (M=Zn or Co): vital roles of inactive zn and highly efficient activity toward
oxygen reduction/evolution reactions for rechargeable Zn-Air battery. Adv Funct Mater 2017;27:1700795. DOI
53. Jiang Y, Liu H, Tan X, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance
lithium sulfur batteries. ACS Appl Mater Interfaces 2017;9:25239-49. DOI
54. Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size
distribution measurements-BET, BJH, and DFT. Can J Chem Eng 2019;97:2781-91. DOI
55. Li Z, Yin L. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se
batteries with superior storage capacity and perfect cycling stability. Nanoscale 2015;7:9597-606. DOI
56. Qu Y, Zhang Z, Jiang S, et al. Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium
–selenium batteries. J Mater Chem A 2014;2:12255. DOI
57. Xia Z, Zhang J, Fan M, Lv C, Chen Z, Li C. Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent
performance cathode for Li-Se batteries. New Carbon Materials 2023;38:190-8. DOI
58. Zhou X, Gao P, Sun S, et al. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (De)lithiation
mechanisms. Chem Mater 2015;27:6730-6. DOI
59. Ribeiro-soares J, Oliveros M, Garin C, et al. Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon
2015;95:646-52. DOI
60. Liu Y, Lu YX, Xu YS, et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv Mater
2020;32:e2000505. DOI
61. Zhou J, Yang J, Xu Z, Zhang T, Chen Z, Wang J. A high performance lithium-selenium battery using a microporous carbon confined
selenium cathode and a compatible electrolyte. J Mater Chem A 2017;5:9350-7. DOI
62. Wang X, Zhang Z, Qu Y, Wang G, Lai Y, Li J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for
high performance lithium-selenium battery. J Power Sources 2015;287:247-52. DOI
63. Wang P, Sun F, Xiong S, et al. WSe Flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating.
2
Angewandte Chemie 2022:134. DOI
64. Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode
material for sodium-ion batteries. Adv Sci 2017;4:1600243. DOI PubMed PMC
65. Liu T, Zhang Y, Hou J, Lu S, Jiang J, Xu M. High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs
for Li-Se atteries. RSC Adv 2015;5:84038-43. DOI
66. Ma C, Wang H, Zhao X, et al. Porous bamboo-derived carbon as selenium host for advanced lithium/sodium–selenium batteries.
Energy Technol 2020;8:1901445. DOI
67. Fang R, Xia Y, Liang C, et al. Supercritical CO -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long
2
cycle life Li-Se batteries. J Mater Chem A 2018;6:24773-82. DOI
68. Wang C, Dong W, Wang L, et al. Dual catalysis-adsorption function modified separator towards high-performance Li-Se battery. Appl
Surf Sci 2022;599:153932. DOI
69. Mo Y, Guo L, Jin H, et al. Improved cycling stability of LiNi Co Mn O through microstructure consolidation by TiO coating for
0.6 0.2 0.2 2 2
Li-ion batteries. J. Power Sources 2020;448:227439. DOI
70. Jiang Z, Zeng Z, Hu W, Han Z, Cheng S, Xie J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur
batteries. Energy Storage Materials 2021;36:333-40. DOI
71. Wang X, Tan Y, Liu Z, et al. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with
enhanced conductivity. Small 2020;16:e2000266. DOI
72. Wang B, Zhang J, Xia Z, et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-