Page 64 - Read Online
P. 64

Page 16 of 17                          Li et al. Chem Synth 2023;3:30  https://dx.doi.org/10.20517/cs.2023.16

               43.      Yang Q, Vaesen S, Vishnuvarthan M, et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic
                   combination of experimental and modelling tools. J Mater Chem 2012;22:10210.  DOI
               44.      Wang J, Yang J, Krishna R, Yang T, Deng S. A versatile synthesis of metal-organic framework-derived porous carbons for CO   2
                   capture and gas separation. J Mater Chem A 2016;4:19095-106.  DOI
               45.      Yang J, Wang J, Deng S, Li J. Improved synthesis of trigone trimer cluster metal organic framework MIL-100Al by a later entry of
                   methyl groups. Chem Commun 2016;52:725-8.  DOI  PubMed
               46.      Seoane B, Téllez C, Coronas J, Staudt C. NH -MIL-53(Al) and NH -MIL-101(Al) in sulfur-containing copolyimide mixed matrix
                                                  2             2
                   membranes for gas separation. Sep Purif Technol 2013;111:72-81.  DOI
               47.      Perea-cachero A, Romero E, Téllez C, Coronas J. Retracted article: insight into the reversible structural crystalline-state transformation
                   from MIL-53(Al) to MIL-68(Al). Cryst Eng Comm 2018;20:402-6.  DOI
               48.      García Márquez A, Demessence A, Platero-prats AE, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-
                   film elaboration. Eur J Inorg Chem 2012;2012:5165-74.  DOI
               49.      Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H. Amorphous intermediate derivative from ZIF-67 and its outstanding
                   electrocatalytic activity. Small 2020;16:e1904252.  DOI  PubMed
               50.      Zhang X, Li H, Lv X, et al. Facile Synthesis of highly efficient amorphous Mn-MIL-100 catalysts: formation mechanism and structure
                   changes during application in CO oxidation. Chemistry 2018;24:8822-32.  DOI
               51.      Zhou QY, Zhang Z, Cai JJ, et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a
                   highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 2020;71:104592.  DOI
               52.      Chen B, He X, Yin F, et al. MO-Co@N-Doped Carbon (M=Zn or Co): vital roles of inactive zn and highly efficient activity toward
                   oxygen reduction/evolution reactions for rechargeable Zn-Air battery. Adv Funct Mater 2017;27:1700795.  DOI
               53.      Jiang Y, Liu H, Tan X, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance
                   lithium sulfur batteries. ACS Appl Mater Interfaces 2017;9:25239-49.  DOI
               54.      Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size
                   distribution measurements-BET, BJH, and DFT. Can J Chem Eng 2019;97:2781-91.  DOI
               55.      Li Z, Yin L. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se
                   batteries with superior storage capacity and perfect cycling stability. Nanoscale 2015;7:9597-606.  DOI
               56.      Qu Y, Zhang Z, Jiang S, et al. Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium
                   –selenium batteries. J Mater Chem A 2014;2:12255.  DOI
               57.      Xia Z, Zhang J, Fan M, Lv C, Chen Z, Li C. Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent
                   performance cathode for Li-Se batteries. New Carbon Materials 2023;38:190-8.  DOI
               58.      Zhou X, Gao P, Sun S, et al. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (De)lithiation
                   mechanisms. Chem Mater 2015;27:6730-6.  DOI
               59.      Ribeiro-soares J, Oliveros M, Garin C, et al. Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon
                   2015;95:646-52.  DOI
               60.      Liu  Y,  Lu  YX,  Xu  YS,  et  al.  Pitch-derived  soft  carbon  as  stable  anode  material  for  potassium  ion  batteries.  Adv  Mater
                   2020;32:e2000505.  DOI
               61.      Zhou J, Yang J, Xu Z, Zhang T, Chen Z, Wang J. A high performance lithium-selenium battery using a microporous carbon confined
                   selenium cathode and a compatible electrolyte. J Mater Chem A 2017;5:9350-7.  DOI
               62.      Wang X, Zhang Z, Qu Y, Wang G, Lai Y, Li J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for
                   high performance lithium-selenium battery. J Power Sources 2015;287:247-52.  DOI
               63.      Wang P, Sun F, Xiong S, et al. WSe Flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating.
                                            2
                   Angewandte Chemie 2022:134.  DOI
               64.      Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode
                   material for sodium-ion batteries. Adv Sci 2017;4:1600243.  DOI  PubMed  PMC
               65.      Liu T, Zhang Y, Hou J, Lu S, Jiang J, Xu M. High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs
                   for Li-Se atteries. RSC Adv 2015;5:84038-43.  DOI
               66.      Ma C, Wang H, Zhao X, et al. Porous bamboo-derived carbon as selenium host for advanced lithium/sodium–selenium batteries.
                   Energy Technol 2020;8:1901445.  DOI
               67.      Fang R, Xia Y, Liang C, et al. Supercritical CO -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long
                                                  2
                   cycle life Li-Se batteries. J Mater Chem A 2018;6:24773-82.  DOI
               68.      Wang C, Dong W, Wang L, et al. Dual catalysis-adsorption function modified separator towards high-performance Li-Se battery. Appl
                   Surf Sci 2022;599:153932.  DOI
               69.      Mo Y, Guo L, Jin H, et al. Improved cycling stability of LiNi Co Mn O  through microstructure consolidation by TiO  coating for
                                                           0.6  0.2  0.2  2                       2
                   Li-ion batteries. J. Power Sources 2020;448:227439.  DOI
               70.      Jiang Z, Zeng Z, Hu W, Han Z, Cheng S, Xie J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur
                   batteries. Energy Storage Materials 2021;36:333-40.  DOI
               71.      Wang X, Tan Y, Liu Z, et al. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with
                   enhanced conductivity. Small 2020;16:e2000266.  DOI
               72.      Wang B, Zhang J, Xia Z, et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-
   59   60   61   62   63   64   65   66   67   68   69