Page 63 - Read Online
P. 63

Li et al. Chem Synth 2023;3:30  https://dx.doi.org/10.20517/cs.2023.16          Page 15 of 17

                   suppressed polyselenide shuttling. Adv Energy Mater 2018;8:1701953.  DOI
               13.      Xin S, Yu L, You Y, et al. The Electrochemistry with Lithium versus sodium of selenium confined to slit micropores in carbon. Nano
                   Lett 2016;16:4560-8.  DOI
               14.      Liu Y, Si L, Zhou X, et al. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J Mater Chem
                   A 2014;2:17735-9.  DOI
               15.      Hippauf F, Nickel W, Hao G, et al. The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur
                   batteries. Adv Mater Interfaces 2016;3:1600508.  DOI
               16.      Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries.
                   Angew Chem Int Ed Engl 2013;52:8363-7.  DOI
               17.      Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-
                   6.  DOI  PubMed
               18.      Liu L, Wei Y, Zhang C, et al. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by
                   controlling the pore structure and nitrogen doping. Electrochimica Acta 2015;153:140-8.  DOI
               19.      Park S, Park J, Kang YC. Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected
                   bimodal pores for Li-Se batteries with high capacity and rate performance. J Mater Chem A 2018;6:1028-36.  DOI
               20.      Liu T, Dai C, Jia M, et al. Selenium embedded in metal-organic framework derived hollow hierarchical porous carbon spheres for
                   advanced lithium-selenium batteries. ACS Appl Mater Interfaces 2016;8:16063-70.  DOI
               21.      Xia W, Qiu B, Xia D, Zou R. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in
                   energy storage. Sci Rep 2013;3:1935.  DOI  PubMed  PMC
               22.      Li H, Dong W, Li C, et al. Boosting reaction kinetics and shuttle effect suppression by single crystal MOF-derived N-doped ordered
                   hierarchically porous carbon for high performance Li-Se battery. Sci China Mater 2022;65:2975-88.  DOI
               23.      Li C, Wang Y, Li H, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals
                   onto multi walled carbon nanotubes for high performance Li-Se battery. J Energy Chem 2021;59:396-404.  DOI
               24.      Li H, Dong W, Li C, et al. Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery. J
                   Energy Chem 2022;68:624-36.  DOI
               25.      Song JP, Wu L, Dong WD, et al. MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced
                   lithium-selenium batteries. Nanoscale 2019;11:6970-81.  DOI
               26.      Dong WD, Yu WB, Xia FJ, et al. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous
                   carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. J Colloid Interface Sci 2021;582:60-9.  DOI
               27.      Zhao Y, Song Z, Li X, et al. Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2016;2:35-62.  DOI
               28.      Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord
                   Chem Rev 2016;307:361-81.  DOI
               29.      Liu X, Sun T, Hu J, Wang S. Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and
                   applications. J Mater Chem A 2016;4:3584-616.  DOI
               30.      Xu J, Lawson T, Fan H, Su D, Wang G. Updated metal compounds (MOFs, -S, -OH, -N, -C) used as cathode materials for lithium–
                   sulfur batteries. Adv Energy Mater 2018;8:1702607.  DOI
               31.      Tang J, Yamauchi Y. Carbon materials: MOF morphologies in control. Nat Chem 2016;8:638-9.  DOI  PubMed
               32.      Dang S, Zhu Q, Xu Q. Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 2018:3.  DOI
               33.      Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks.
                   Chem Commun 2012;48:7447-9.  DOI
               34.      Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their
                   promising applications. J Mater Chem A 2013;1:14-9.  DOI
               35.      Wu HB, Lou XWD. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion:
                   promises and challenges. Sci Adv 2017;3:eaap9252.  DOI
               36.      Lai Y, Gan Y, Zhang Z, Chen W, Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium
                   battery. Electrochimica Acta 2014;146:134-41.  DOI
                                                                                           +
               37.      Guo L, Sun J, Sun X, Zhang J, Hou L, Yuan C. Construction of 1D conductive Ni-MOF nanorods with fast Li  kinetic diffusion and
                   stable high-rate capacities as an anode for lithium ion batteries. Nanoscale Adv 2019;1:4688-91.  DOI  PubMed  PMC
               38.      Cai S, Meng Z, Cheng Y, et al. Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic
                   frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells. Electrochimica Acta 2021;395:139074.  DOI
               39.      Xu Q, Liu T, Li Y, et al. Selenium encapsulated into metal-organic frameworks derived N-doped porous carbon polyhedrons as
                   cathode for Na-Se batteries. ACS Appl Mater Interfaces 2017;9:41339-46.  DOI
               40.      He J, Lv W, Chen Y, et al. Three-dimensional hierarchical C-Co-N/Se derived from metal-organic framework as superior cathode for
                   Li-Se batteries. J Power Sources 2017;363:103-9.  DOI
               41.      Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon
                   hydration. Chemistry 2004;10:1373-82.  DOI
               42.      Volkringer C, Meddouri M, Loiseau T, et al. The Kagomé topology of the gallium and indium metal-organic framework types with a
                   MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg Chem 2008;47:11892-901.
                   DOI
   58   59   60   61   62   63   64   65   66   67   68