Page 63 - Read Online
P. 63
Li et al. Chem Synth 2023;3:30 https://dx.doi.org/10.20517/cs.2023.16 Page 15 of 17
suppressed polyselenide shuttling. Adv Energy Mater 2018;8:1701953. DOI
13. Xin S, Yu L, You Y, et al. The Electrochemistry with Lithium versus sodium of selenium confined to slit micropores in carbon. Nano
Lett 2016;16:4560-8. DOI
14. Liu Y, Si L, Zhou X, et al. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J Mater Chem
A 2014;2:17735-9. DOI
15. Hippauf F, Nickel W, Hao G, et al. The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur
batteries. Adv Mater Interfaces 2016;3:1600508. DOI
16. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries.
Angew Chem Int Ed Engl 2013;52:8363-7. DOI
17. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-
6. DOI PubMed
18. Liu L, Wei Y, Zhang C, et al. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by
controlling the pore structure and nitrogen doping. Electrochimica Acta 2015;153:140-8. DOI
19. Park S, Park J, Kang YC. Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected
bimodal pores for Li-Se batteries with high capacity and rate performance. J Mater Chem A 2018;6:1028-36. DOI
20. Liu T, Dai C, Jia M, et al. Selenium embedded in metal-organic framework derived hollow hierarchical porous carbon spheres for
advanced lithium-selenium batteries. ACS Appl Mater Interfaces 2016;8:16063-70. DOI
21. Xia W, Qiu B, Xia D, Zou R. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in
energy storage. Sci Rep 2013;3:1935. DOI PubMed PMC
22. Li H, Dong W, Li C, et al. Boosting reaction kinetics and shuttle effect suppression by single crystal MOF-derived N-doped ordered
hierarchically porous carbon for high performance Li-Se battery. Sci China Mater 2022;65:2975-88. DOI
23. Li C, Wang Y, Li H, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals
onto multi walled carbon nanotubes for high performance Li-Se battery. J Energy Chem 2021;59:396-404. DOI
24. Li H, Dong W, Li C, et al. Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery. J
Energy Chem 2022;68:624-36. DOI
25. Song JP, Wu L, Dong WD, et al. MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced
lithium-selenium batteries. Nanoscale 2019;11:6970-81. DOI
26. Dong WD, Yu WB, Xia FJ, et al. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous
carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. J Colloid Interface Sci 2021;582:60-9. DOI
27. Zhao Y, Song Z, Li X, et al. Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2016;2:35-62. DOI
28. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord
Chem Rev 2016;307:361-81. DOI
29. Liu X, Sun T, Hu J, Wang S. Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and
applications. J Mater Chem A 2016;4:3584-616. DOI
30. Xu J, Lawson T, Fan H, Su D, Wang G. Updated metal compounds (MOFs, -S, -OH, -N, -C) used as cathode materials for lithium–
sulfur batteries. Adv Energy Mater 2018;8:1702607. DOI
31. Tang J, Yamauchi Y. Carbon materials: MOF morphologies in control. Nat Chem 2016;8:638-9. DOI PubMed
32. Dang S, Zhu Q, Xu Q. Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 2018:3. DOI
33. Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks.
Chem Commun 2012;48:7447-9. DOI
34. Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their
promising applications. J Mater Chem A 2013;1:14-9. DOI
35. Wu HB, Lou XWD. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion:
promises and challenges. Sci Adv 2017;3:eaap9252. DOI
36. Lai Y, Gan Y, Zhang Z, Chen W, Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium
battery. Electrochimica Acta 2014;146:134-41. DOI
+
37. Guo L, Sun J, Sun X, Zhang J, Hou L, Yuan C. Construction of 1D conductive Ni-MOF nanorods with fast Li kinetic diffusion and
stable high-rate capacities as an anode for lithium ion batteries. Nanoscale Adv 2019;1:4688-91. DOI PubMed PMC
38. Cai S, Meng Z, Cheng Y, et al. Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic
frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells. Electrochimica Acta 2021;395:139074. DOI
39. Xu Q, Liu T, Li Y, et al. Selenium encapsulated into metal-organic frameworks derived N-doped porous carbon polyhedrons as
cathode for Na-Se batteries. ACS Appl Mater Interfaces 2017;9:41339-46. DOI
40. He J, Lv W, Chen Y, et al. Three-dimensional hierarchical C-Co-N/Se derived from metal-organic framework as superior cathode for
Li-Se batteries. J Power Sources 2017;363:103-9. DOI
41. Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon
hydration. Chemistry 2004;10:1373-82. DOI
42. Volkringer C, Meddouri M, Loiseau T, et al. The Kagomé topology of the gallium and indium metal-organic framework types with a
MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg Chem 2008;47:11892-901.
DOI