Page 80 - Read Online
P. 80

Page 18 of 23                    Tan et al. Complex Eng Syst 2023;3:6  I http://dx.doi.org/10.20517/ces.2023.10


               In addition, the other scalars are given as follows

                                  
                               ∑
                           31          T  T
                          Ξ       =  (   ) B       − 2(1 +       )R    − S 1   − S 2   − S 3   − S 4   ,
                                       
                                 =1
                           33                                       41
                          Ξ       = −2(4 +       )R    + 2S 1   − 2S 2   + 2S 3   − 2S 4   , Ξ       = S 1   + S 2   − S 3   − S 4   ,
                           43                                   44
                          Ξ       = −2(2 −       )R    − S 1   + S 2   + S 3   − S 4   , Ξ       = −Q      − 4(2 −       )R    ,
                           51            53                         54              55
                                        ˜
                          Ξ       = S 3   + S 4   , Ξ       = −S 3   + S 4   + 3(2 −       )R    , Ξ       = 3(2 −       )R    , Ξ       = −3(2 −       )R    ,
                           61              62                  66
                          Ξ       = 3(1 +       )R    , Ξ       = S 2   + 3(1 +       )R    , Ξ       = −3(1 +       )R    ,
                           71   1  T  T  77            +6,1     T  T    +6,  +6
                          Ξ       =          B , Ξ       = −   0    1 Ω    , Ξ       =          B , Ξ       = −   0       Ω    ,
                                                                     
                                        
                               [                                ]
                           11       T
                          Γ       =         G         0 0 0 0 0 0 · · · 0 ,
                           12          −1     −1         −1            −1
                                                                           
                          Γ       = −(   − 1)         {           , · · · ,            ,   ≠   , · · · ,      1      },
                                                           1
                                                1
                                  [                                                   ]
                           21                     ∑                     1             
                                                        
                          Γ  =       A               0 B         =1       0 0 0 B               · · ·  B               ,
                           31     [                                ]
                          Γ       =       A               0 0 0 0 0 0 · · · 0 ,
                                  [                                    ]
                           41               ∑       
                                                   
                          Γ       =       0 0 B         =1       0 0 0 0 · · · 0 ,
                           51     [                      1        ]
                          Γ       =       0 0 0 0 0 0 B               · · · 0 ,
                           61     [                                 ]
                          Γ       =       0 0 0 0 0 0 0 · · ·  B               ,
                           71     [                                ]
                          Γ       =       G                 0 0 0 0 0 0 · · · 0 ,
                    ˇ          −1                            −1                                  −1
                   R    = −(   − 1)         {(1 +      2 +      3 + · · · +      ,  +3 ) Φ(R 1 ), · · · , (1 +      2 +      3 + · · · +      ,  +3 ) Φ(R    ),    ≠   ,
                                                −1
                   · · · , (1 +      2 +      3 + · · · +      ,  +3 ) Φ(R    )},
                                     2
                   Φ(R    ) = −2              +          ,    = {1, · · · ,   (    ≠   ), · · · ,   },
                                       
                            0     0   S 1   + S 3    −S 1   + S 3    −S 3    0  0 · · · 0 
                                                                               
                                                                               
                    81      0     0   S 2   + S 4    −S 2   + S 4    −S 4    0  0 · · · 0
                   Γ       =                                                    ,
                         S 1   + S 3    0 −S 1   + S 3    0  0   −S 3    0 · · · 0
                                                                               
                          S 2   + S 4    0 −S 2   + S 4    0  0  −S 4    0 · · · 0 
                                                                               
                    ˆ               −1            −1     −1       −1
                   R    =         {−(1 −       ) R    , −3(1 −       ) R    , −   R    , −3   R    }.
                                                           
                                                                    
                                                                   
               Furthermore, the memory controller gain matrix is        =       .
                                                                    −1
                                                                            
                                  −1                                                                       −1
               Proof: Define         = P ,thenpre-multiplyingandpost-multiplying (15),(17),(20) with         {        , · · · ,         , R   
                                      
                 −1
                                 −1
                             −1
                         −1
                     −1
               R , R , R , R , R ,         ,         ,         ,         } respectively, and define         =                 , R      =         R              , Q      =
                                   
                       Q              , S 1   =         S 1           , S 2   =         S 2           , S 3   =         S 3           , S 4   =         S 4           , Q    =         Q            , Ω    =
                       Ω           . According to Schur complement and Lemma 2, and considering         (ℎ) ∈ [   (ℎ),         (ℎ)],
                                                                                                  
               (31), (32), (35), (36), (40) can be obtained. This completes the proof.
               Remark 4. For a given dwell time ℎ, the TR         (ℎ) can be regarded as a linear combination of its upper and
               lower bounds, namely         (ℎ) =    1         (ℎ) +    2    (ℎ), where    1 +    2 = 1 and    1 > 0,    2 > 0. We can change
                                                           
                  1 and    2 to get the corresponding value of         (ℎ).
               Remark 5. Theorem 2 presents a solution algorithm in terms of linear matrix inequality to obtain the con-
               troller gains. However, the transition probability in Case 3 is completely unknown. We introduce               (ℎ) to
   75   76   77   78   79   80   81   82   83   84   85