Page 33 - Read Online
P. 33

Zander et al. Complex Eng Syst 2023;3:9  I http://dx.doi.org/10.20517/ces.2023.11  Page 15 of 16



                  Springer; 2019. pp. 215–27. DOI
               20. Viaña J, Ralescu S, Cohen K, Ralescu A, Kreinovich V. Extension to Multidimensional Problems of a Fuzzy-Based Explainable and
                  Noise-Resilient Algorithm. In: Decision Making Under Uncertainty and Constraints: A Why-Book. Springer; 2023. pp. 289–96. DOI
               21. Pickering L, Cohen K. Genetic Fuzzy Controller for the Homicidal Chauffeur Differential Game. In: Applications of Fuzzy Techniques:
                  Proceedings of the 2022 Annual Conference of the North American Fuzzy Information Processing Society NAFIPS 2022. Springer; 2022.
                  pp. 196–204. DOI
               22. Pickering L, Cohen K. Toward explainable AI—genetic fuzzy systems—a use case. In: Explainable AI and Other Applications of Fuzzy
                  Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processing Society, NAFIPS 2021.
                  Springer; 2022. pp. 343–54. DOI
               23. Fernandez A, Herrera F, Cordon O, del Jesus MJ, Marcelloni F. Evolutionary fuzzy systems for explainable artificial intelligence: Why,
                  when, what for, and where to? IEEE Comput Intell Mag 2019;14:69–81. DOI
               24. Berenji HR. A reinforcement learning—based architecture for fuzzy logic control. Int J Approx Reason 1992;6:267–92. DOI
               25. Glorennec PY, Jouffe L. Fuzzy Q-learning. In: Proceedings of 6th international fuzzy systems conference. vol. 2. IEEE; 1997. pp. 659–62.
                  DOI
               26. Er MJ, Deng C. Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning. IEEE Trans Syst Man Cybern B Cybern
                  2004;34:1478–89. DOI
               27. Jamshidi P, Sharifloo AM, Pahl C, Metzger A, Estrada G. Self-learning cloud controllers: Fuzzy q-learning for knowledge evolution. In:
                  2015 International Conference on Cloud and Autonomic Computing. IEEE; 2015. pp. 208–11. DOI
               28. Kumar S. Learning of Takagi-Sugeno Fuzzy Systems using Temporal Difference methods. DigiPen Institute of Technology; 2020.
               29. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature 2015 Feb;518:529–33. DOI
               30. Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst , Man, Cybern 1993;23:665–85. DOI
               31. King SD. Explainable AI competition; 2023. Accessed on 2/15/2023. Available from: https://xfuzzycomp.github.io/XFC/. [Last accessed
                  on 6 Jun 2023]
               32. Sugeno M, Kang G. Structure identification of fuzzy model. Fuzzy Sets Syst 1988;28:15–33. DOI
               33. Bellman R. A markovian decision process. Indiana Univ Math J 1957;6:679–84. Available from: https://www.jstor.org/stable/24900506
                  [Last accessed on 6 Jun 2023]
               34. Watkins CJCH, Dayan P. Q-learning. Mach Learn 1992 May;8:279–92. DOI
               35. Vinyals O, Babuschkin I, Czarnecki WM, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature
                  2019;575:350–54. DOI
               36. Lin LJ. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach Learn 1992;8:293–321. DOI
               37. Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. arXiv; 2015. DOI
               38. Andrychowicz M, Wolski F, Ray A, et al. Hindsight Experience Replay. arXiv; 2018. DOI
               39. van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning. arXiv; 2015. DOI
               40. Polyak BT, Juditsky AB. Acceleration of Stochastic Approximation by Averaging. SIAM J Control Optim 1992 Jul;30:838–55. DOI
               41. Rosenstein MT, Barto AG, Si J, et al. Supervised actor-critic reinforcement learning. Learning and Approximate Dynamic Programming:
                  Scaling Up to the Real World 2004:359–80. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ec4de9c
                  9729f9301aefa713ac42f194a364a4406 [Last accessed on 6 Jun 2023]
               42. Yan X, Deng Z, Sun Z. Competitive Takagi-Sugeno fuzzy reinforcement learning. In: Proceedings of the 2001 IEEE International
                  Conference on Control Applications (CCA’01)(Cat. No. 01CH37204). IEEE; 2001. pp. 878–83. DOI
               43. Jaakkola T, Jordan M, Singh S. Convergence of stochastic iterative dynamic programming algorithms. Adv Neural Inf Proces Syst 1993;6.
                  Available from: https://proceedings.neurips.cc/paper/1993/file/5807a685d1a9ab3b599035bc566ce2b9-Paper.pdf [Last accessed on 6 Jun
                  2023]
               44. Melo FS.  Convergence of Q-learning:  a simple proof.  Inst Syst Robot, Tech Rep 2001;1–4. Available from:  https:
                  //d1wqtxts1xzle7.cloudfront.net/55970511/ProofQlearning-libre.pdf?1520268288=&response-content-disposition=inline%3B+file
                  name%3DConvergence_of_Q_learning_a_simple_proof.pdf&Expires=1686128725&Signature=SZMvoQSM3Z7UPmyXfT4QOw8Co
                  0pUvQM1h3NfUwa3aJXBPsj8ox1O9WI~QaTZrpZ5~Cr4NcfcDmsh~IUjT101xNeKR2-PCvewznfNXB38~UEGN736l3lniIQLKe1Qd
                  ebMTHgvtL7iDOivntOKxrLAnzUx0I4dYlAuYUf3qBNk37aqJtIH6WTpCuJUKeH3pW282tY11MVEK0P~Czp-WsOkY8wtMOu8~
                  NCNcS2sR6d1rhV1JeWPv1BuTAg6-hBUFFhbqLlY7SvJ8j6IWA0bJy~Miaz4Q2C37sOi2eo2~y819e3F3jiby3mMWeEpf1WYPUWK~
                  0hB475dafC5FGZcEKTVjA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA [Last accessed on 6 Jun 2023]
               45. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Systems 1989;2:303–14. DOI
               46. Yarotsky D. Error bounds for approximations with deep ReLU networks. Neural Netw 2017;94:103–14. DOI
               47. Melo FS, Ribeiro MI. Q-learning with linear function approximation. In: Learning Theory: 20th Annual Conference on Learning Theory,
                  COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings 20. Springer; 2007. pp. 308–22. DOI
               48. Papavassiliou VA, Russell S. Convergence of reinforcement learning with general function approximators. In: IJCAI. vol. 99; 1999. pp.
                  748–55. Available from: http://people.eecs.berkeley.edu/~russell/papers/ijcai99-bridge.pdf [Last accessed on 6 Jun 2023]
               49. Ying H. General Takagi-Sugeno fuzzy systems are universal approximators. In: 1998 IEEE International Conference on Fuzzy Systems
                  Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228). vol. 1. IEEE; 1998. pp. 819–23. DOI
               50. Bede B. Mathematics of Fuzzy Sets and Fuzzy Logic. Springer; 2013.
               51. Brockman G, Cheung V, Pettersson L, et al. Openai gym. arXiv preprint arXiv:160601540 2016. DOI
               52. Benmiloud T. Multioutput Adaptive Neuro-Fuzzy Inference System. In: Proceedings of the 11th WSEAS International Conference on
   28   29   30   31   32   33   34   35   36   37   38