Page 281 - Read Online
P. 281

Page 14 of 16        Wang et al. Microstructures 2023;3:2023042  https://dx.doi.org/10.20517/microstructures.2023.46

               Availability of data and materials
               Data will be made available upon request.


               Financial support and sponsorship
               This research was supported by the JSPS KAKENHI Grant Number 19H04475.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       Tong S, Quinto CA, Zhang L, Mohindra P, Bao G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano
                   2017;11:6808-16.  DOI  PubMed
               2.       Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale
                   2014;6:11553-73.  DOI  PubMed
               3.       Cao Z, Wang D, Li Y, et al. Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic
                   differentiation of mesenchymal stem cells. Sci China Life Sci 2018;61:448-56.  DOI
               4.       Liu X, Zheng J, Sun W, et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological
                   effect for treating cancer metastasis. ACS Nano 2019;13:8811-25.  DOI
               5.       Liu X, Zhang Y, Wang Y, et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.
                   Theranostics 2020;10:3793-815.  DOI  PubMed  PMC
               6.       Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles
                   combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317-24.  DOI
                   PubMed  PMC
               7.       Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging,
                   and three-dimensional temperature distribution. Eur Urol 2007;52:1653-61.  DOI
               8.       Ng EY, Kumar SD. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian
                   and Brownian relaxation: a review. Biomed Eng Online 2017;16:36.  DOI  PubMed  PMC
               9.       Di Corato R, Espinosa A, Lartigue L, et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle
                   designs. Biomaterials 2014;35:6400-11.  DOI
               10.      Balakrishnan PB, Silvestri N, Fernandez-Cabada T, et al. Exploiting unique alignment of cobalt ferrite nanoparticles, mild
                   hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Adv Mater 2020;32:e2003712.  DOI
               11.      Lu N, Huang P, Fan W, et al. Tri-stimuli-responsive biodegradable theranostics for mild hyperthermia enhanced chemotherapy.
                   Biomaterials 2017;126:39-48.  DOI
               12.      Zhang J, Zhao B, Chen S, et al. Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA
                   interstrand cross-link formation for efficient chemotherapy. ACS Nano 2020;14:14831-45.  DOI
               13.      Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G. Gelatin Scaffolds with controlled pore structure and mechanical property for
                   cartilage tissue engineering. Tissue Eng Part C Methods 2016;22:189-98.  DOI
               14.      Conde-leboran I, Baldomir D, Martinez-boubeta C, et al. A single picture explains diversity of hyperthermia response of magnetic
                   nanoparticles. J Phys Chem C 2015;119:15698-706.  DOI
               15.      de Sousa ME, Carrea A, Mendoza Zélis P, et al. Stress-induced gene expression sensing intracellular heating triggered by magnetic
                   hyperthermia. J Phys Chem C 2016;120:7339-48.  DOI
               16.      Munoz-Menendez C, Conde-Leboran I, Serantes D, Chantrell R, Chubykalo-Fesenko O, Baldomir D. Distinguishing between heating
                   power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia. Soft Matter 2016;12:8815-8.  DOI  PubMed
               17.      Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic
                   nanoparticles in alternating magnetic fields. ACS Nano 2013;7:5091-101.  DOI  PubMed
               18.      Villanueva A, de la Presa P, Alonso JM, et al. Hyperthermia hela cell treatment with silica-coated manganese oxide nanoparticles. J
   276   277   278   279   280   281   282   283   284   285   286