Page 283 - Read Online
P. 283

Page 16 of 16        Wang et al. Microstructures 2023;3:2023042  https://dx.doi.org/10.20517/microstructures.2023.46

                   microenvironment for anticancer drug screening and immunotherapy. Adv Sci 2023;10:e2302855.  DOI  PubMed  PMC
               48.      Chen H, Sun R, Zeng T, et al. Stepwise photothermal therapy and chemotherapy by composite scaffolds of gold nanoparticles, BP
                   nanosheets and gelatin immobilized with doxorubicin-loaded thermosensitive liposomes. Biomater Sci 2022;10:7042-54.  DOI
               49.      Lartigue L, Hugounenq P, Alloyeau D, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their
                   efficiency as heating mediators and MRI contrast agents. ACS Nano 2012;6:10935-49.  DOI
               50.      Hemery G, Keyes AC Jr, Garaio E, et al. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron
                   oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem 2017;56:8232-43.  DOI
               51.      Sutrisno L, Chen H, Chen Y, et al. Composite scaffolds of black phosphorus nanosheets and gelatin with controlled pore structures for
                   photothermal cancer therapy and adipose tissue engineering. Biomaterials 2021;275:120923.  DOI
               52.      Li J, Zhang J, Chen Y, Kawazoe N, Chen G. TEMPO-conjugated gold nanoparticles for reactive oxygen species scavenging and
                   regulation of stem cell differentiation. ACS Appl Mater Interfaces 2017;9:35683-92.  DOI
               53.      Zheng J, Sun R, Chen H, et al. Morphological dependence of breast cancer cell responses to doxorubicin on micropatterned surfaces.
                   Polymers 2022;14:2761.  DOI  PubMed  PMC
               54.      Chen Y, Kawazoe N, Chen G. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous
                   composite scaffolds for bone tissue engineering. Acta Biomater 2018;67:341-53.  DOI  PubMed
               55.      Zheng J, Wang Y, Kawazoe N, Yang Y, Chen G. Influences of viscosity on the osteogenic and adipogenic differentiation of
                   mesenchymal stem cells with controlled morphology. J Mater Chem B 2022;10:3989-4001.  DOI
               56.      Sutrisno L, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. PLGA-collagen-BPNS bifunctional composite mesh for
                   photothermal therapy of melanoma and skin tissue engineering. J Mater Chem B 2022;10:204-13.  DOI
               57.      Ma H, Zhuang H, Zhai D, et al. Xonotlite nanowire-containing bioactive scaffolds for the therapy of defective adipose tissue in breast
                   cancer. Nano Lett 2023;23:7157-65.  DOI
               58.      Chen H, Sun R, Zheng J, Kawazoe N, Yang Y, Chen G. Doxorubicin-encapsulated thermosensitive liposome-functionalized
                   photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. J Mater Chem B 2022;10:4771-82.  DOI
               59.      Chen H, Wang X, Sutrisno L, et al. Folic acid-functionalized composite scaffolds of gelatin and gold nanoparticles for photothermal
                   ablation of breast cancer cells. Front Bioeng Biotechnol 2020;8:589905.  DOI  PubMed  PMC
               60.      Sutrisno L, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Preparation of composite scaffolds composed of gelatin and Au
                   nanostar-deposited black phosphorus nanosheets for the photothermal ablation of cancer cells and adipogenic differentiation of stem
                   cells. Biomater Adv 2022;138:212938.  DOI
               61.      Zhang J, Li J, Kawazoe N, Chen G. Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for
                   photothermal cancer therapy. J Mater Chem B 2017;5:245-53.  DOI
               62.      Pinheiro IF, Brollo ME, Bassani GS, et al. Effect of viscosity and colloidal stability on the magnetic hyperthermia of petroleum-based
                   nanofluids. Fuel 2023;331:125810.  DOI
               63.      Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J
                   2008;37:223-8.  DOI  PubMed
               64.      Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators
                   for magnetic hyperthermia. J Am Chem Soc 2007;129:2628-35.  DOI  PubMed
               65.      Wang X, Yang Y, Hu X, Kawazoe N, Yang Y, Chen G. Morphological and mechanical properties of osteosarcoma microenvironment
                   cells explored by atomic force microscopy. Anal Sci 2016;32:1177-82.  DOI
               66.      Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San Paulo A. Effect of actin organization on the stiffness of living breast cancer
                   cells revealed by peak-force modulation atomic force microscopy. ACS Nano 2016;10:3365-74.  DOI  PubMed
               67.      Qi G, Zhang Y, Xu S, et al. Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced raman spectroscopy
                   nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal
                   cells. Anal Chem 2018;90:13356-64.  DOI
               68.      Danewalia SS, Singh K. Bioactive glasses and glass-ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future
                   perspectives. Mater Today Bio 2021;10:100100.  DOI  PubMed  PMC
   278   279   280   281   282   283   284   285   286   287   288