Page 282 - Read Online
P. 282

Wang et al. Microstructures 2023;3:2023042  https://dx.doi.org/10.20517/microstructures.2023.46  Page 15 of 16

                   Phys Chem C 2010;114:1976-81.  DOI
               19.      Baki A, Remmo A, Löwa N, Wiekhorst F, Bleul R. Albumin-coated single-core iron oxide nanoparticles for enhanced molecular
                   magnetic imaging (MRI/MPI). Int J Mol Sci 2021;22:6235.  DOI  PubMed  PMC
               20.      Obaidat IM, Issa B, Haik Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 2015;5:63-89.
                   DOI  PubMed  PMC
               21.      Bauer LM, Situ SF, Griswold MA, Samia AC. High-performance iron oxide nanoparticles for magnetic particle imaging - guided
                   hyperthermia (hMPI). Nanoscale 2016;8:12162-9.  DOI  PubMed
               22.      Coral DF, Zélis PM, Marciello M, et al. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia.
                   Langmuir 2016;32:1201-13.  DOI
               23.      Gavilán H, Simeonidis K, Myrovali E, et al. How size, shape and assembly of magnetic nanoparticles give rise to different
                   hyperthermia scenarios. Nanoscale 2021;13:15631-46.  DOI
               24.      Darwish MS. Effect of carriers on heating efficiency of oleic acid-stabilized magnetite nanoparticles. J Mol Liq 2017;231:80-5.  DOI
               25.      Bordet A, Landis RF, Lee Y, et al. Water-dispersible and biocompatible iron carbide nanoparticles with high specific absorption rate.
                   ACS Nano 2019;13:2870-8.  DOI  PubMed  PMC
               26.      Gonçalves J, Nunes C, Ferreira L, et al. Coating of magnetite nanoparticles with fucoidan to enhance magnetic hyperthermia
                   efficiency. Nanomaterials 2021;11:2939.  DOI  PubMed  PMC
               27.      Cabrera D, Lak A, Yoshida T, et al. Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes. Nanoscale
                   2017;9:5094-101.  DOI
               28.      Engelmann UM, Seifert J, Mues B, et al. Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in
                   hydrogels. J Magn Magn Mater 2019;471:486-94.  DOI
               29.      Kaczmarek K, Mrówczyński R, Hornowski T, Bielas R, Józefczak A. The effect of tissue-mimicking phantom compressibility on
                   magnetic hyperthermia. Nanomaterials 2019;9:803.  DOI  PubMed  PMC
               30.      Cabrera D, Coene A, Leliaert J, et al. Dynamical magnetic response of iron oxide nanoparticles inside live cells. ACS Nano
                   2018;12:2741-52.  DOI
               31.      Suto M, Hirota Y, Mamiya H, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn
                   Magn Mater 2009;321:1493-6.  DOI
               32.      Dong S, Chen Y, Yu L, Lin K, Wang X. Magnetic Hyperthermia-synergistic H O  self-sufficient catalytic suppression of osteosarcoma
                                                                      2  2
                   with enhanced bone-regeneration bioactivity by 3D-printing composite scaffolds. Adv Funct Mater 2020;30:1907071.  DOI
               33.      Bigham A, Aghajanian AH, Saudi A, Rafienia M. Hierarchical porous Mg SiO -CoFe O  nanomagnetic scaffold for bone cancer
                                                                               4
                                                                             2
                                                                     2
                                                                        4
                   therapy and regeneration: surface modification and in vitro studies. Mater Sci Eng C Mater Biol Appl 2020;109:110579.  DOI
                   PubMed
               34.      Farzin A, Fathi M, Emadi R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue
                   engineering applications. Mater Sci Eng C Mater Biol Appl 2017;70:21-31.  DOI  PubMed
               35.      Serio F, Silvestri N, Kumar Avugadda S, et al. Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for
                   combining magneto-thermal and chemotherapeutic effects on cancer cells. J Colloid Interface Sci 2022;607:34-44.  DOI
               36.      Eivazzadeh-Keihan R, Pajoum Z, Aghamirza Moghim Aliabadi H, et al. Magnetic chitosan-silk fibroin hydrogel/graphene oxide
                   nanobiocomposite for biological and hyperthermia applications. Carbohydr Polym 2023;300:120246.  DOI
               37.      Sun R, Chen H, Zheng J, et al. Composite scaffolds of gelatin and Fe O  nanoparticles for magnetic hyperthermia-based breast cancer
                                                                3
                                                                  4
                   treatment and adipose tissue regeneration. Adv Healthc Mater 2023;12:e2202604.  DOI
               38.      Lu C, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, Chen G. How hydrogel stiffness affects adipogenic differentiation of mesenchymal
                   stem cells under controlled morphology. ACS Appl Bio Mater 2023;6:3441-50.  DOI
               39.      Wu H, Liu L, Song L, Ma M, Gu N, Zhang Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated
                   generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019;13:14013-23.  DOI
               40.      Gao F, Xie W, Miao Y, et al. Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention. Adv
                   Healthc Mater 2019;8:e1900203.  DOI
               41.      Stocke NA, Sethi P, Jyoti A, et al. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic
                   nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Biomaterials 2017;120:115-25.  DOI
                   PubMed  PMC
               42.      Zhang X, Wei P, Wang Z, et al. Herceptin-conjugated DOX-Fe O /P(NIPAM-AA-MAPEG) nanogel system for HER2-targeted breast
                                                            3
                                                              4
                   cancer treatment and magnetic resonance imaging. ACS Appl Mater Interfaces 2022;14:15956-69.  DOI
               43.      Lu J, Guo Z, Xie W, et al. Hypoxia-overcoming breast-conserving treatment by magnetothermodynamic implant for a localized free-
                   radical burst combined with hyperthermia. ACS Appl Mater Interfaces 2021;13:35484-93.  DOI
               44.      Jalili NA, Jaiswal MK, Peak CW, Cross LM, Gaharwar AK. Injectable nanoengineered stimuli-responsive hydrogels for on-demand
                   and localized therapeutic delivery. Nanoscale 2017;9:15379-89.  DOI  PubMed  PMC
               45.      Zheng J, Xie Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise proliferation and chondrogenic differentiation of mesenchymal
                   stem cells in collagen sponges under different microenvironments. Int J Mol Sci 2022;23:6406.  DOI  PubMed  PMC
               46.      Sun R, Chen H, Sutrisno L, Kawazoe N, Chen G. Nanomaterials and their composite scaffolds for photothermal therapy and tissue
                   engineering applications. Sci Technol Adv Mater 2021;22:404-28.  DOI  PubMed  PMC
               47.      Zhang W, Chen Y, Li M, et al. A PDA-functionalized 3D lung scaffold bioplatform to construct complicated breast tumor
   277   278   279   280   281   282   283   284   285   286   287