Page 235 - Read Online
P. 235

Hou et al. Microstructures 2023;3:2023039  https://dx.doi.org/10.20517/microstructures.2023.37  Page 17 of 17

                   principle appraisal. Inorganica Chim Acta 2020;511:119801.  DOI
               74.      Bao S, Li J, Guan B, Jia M, Terasaki O, Yu J. A green selective water-etching approach to MOF@mesoporous SiO  yolk-shell
                                                                                                  2
                   nanoreactors with enhanced catalytic stabilities. Matter 2020;3:498-508.  DOI
               75.      Lee S, Oh S, Oh M. Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching,
                   and structure transformation. Angew Chem 2020;132:1343-9.  DOI
               76.      Narciso J, Ramos-fernandez EV, Delgado-marín JJ, Affolter CW, Olsbye U, Redekop EA. New route for the synthesis of Co-MOF
                   from metal substrates. Microporous Mesoporous Mater 2021;324:111310.  DOI
               77.      Zhang Z, Li X, Yuan Y, Pan YT, Wang DY, Yang R. Confined dispersion of zinc hydroxystannate nanoparticles into layered
                   bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl Mater Interfaces
                   2019;11:40951-60.  DOI
               78.      Hou B, Song K, Ur Rehman Z, et al. Precise control of a yolk-double shell metal-organic framework-based nanostructure provides
                   enhanced fire safety for epoxy nanocomposites. ACS Appl Mater Interfaces 2022;14:14805-16.  DOI
               79.      Song K, Zhang H, Pan YT, et al. Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards
                   flame retardant polyurea composites. J Colloid Interface Sci 2023;643:489-501.  DOI
               80.      Song K, Li X, Pan Y, et al. The influence on flame retardant epoxy composites by a bird’s nest-like structure of Co-based isomers
                   evolved from zeolitic imidazolate framework-67. Polym Degrad Stab 2023;211:110318.  DOI
               81.      Hou B, Zhang W, Lu H, et al. Multielement flame-retardant system constructed with metal POSS-organic frameworks for epoxy resin.
                   ACS Appl Mater Interfaces 2022;14:49326-37.  DOI
               82.      Song K, Hou B, Ur Rehman Z, et al. “Sloughing” of metal-organic framework retaining nanodots via step-by-step carving and its
                   flame-retardant effect in epoxy resin. Chem Eng J 2022;448:137666.  DOI
               83.      Wang X, Chen Q, Zheng Y, Hong M, Fu H. Study on novel flame retarded LDH-TDI-HEA-VTES-acrylate composites and their flame
                   retardant mechanism. React Funct Polym 2020;147:104371.  DOI
               84.      Wang H, Li X, Su F, et al. Core-shell ZIF67@ZIF8 modified with phytic acid as an effective flame retardant for improving the fire
                   safety of epoxy resins. ACS Omega 2022;7:21664-74.  DOI  PubMed  PMC
               85.      Hou Y, Chu F, Ma S, Hu Y, Hu W, Gui Z. Rapid synthesis of oxygen-rich covalent C N (CNO) nanosheets by sacrifice of HKUST-1:
                                                                           2
                   advanced metal-free nanofillers for polymers. ACS Appl Mater Interfaces 2018;10:32688-97.  DOI
   230   231   232   233   234   235   236   237   238   239   240