Page 233 - Read Online
P. 233

Hou et al. Microstructures 2023;3:2023039  https://dx.doi.org/10.20517/microstructures.2023.37  Page 15 of 17

               12.      Li A, Xu W, Chen R, Liu Y, Li W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve
                   the fire safety of epoxy resin. Compos A Appl Sci Manuf 2018;112:558-71.  DOI
               13.      Wang X, Wang S, Wang W, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF
                   nanosheets with polyhydroxy groups. Compos B Eng 2020;183:107568.  DOI
               14.      Xie J, Shi X, Zhang M, Dai X, Wang X. Improving the flame retardancy of polypropylene by nano metal-organic frameworks and
                   bioethanol coproduct. Fire Mater 2019;43:373-80.  DOI
               15.      Zheng Y, Lu Y, Zhou K. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites. J Therm Anal
                   Calorim 2019;138:905-14.  DOI
               16.      Wang H, Qiao H, Guo J, et al. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant
                   in thermoplastic polyurethane (TPU). Compos B Eng 2020;182:107498.  DOI
               17.      Cheng J, Ma D, Li S, Qu W, Wang D. Preparation of zeolitic imidazolate frameworks and their application as flame retardant and
                   smoke suppression agent for rigid polyurethane foams. Polymers 2020;12:347.  DOI  PubMed  PMC
               18.      Wang G, Xu W, Chen R, Li W, Liu Y, Yang K. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite
                   to improve the flame retardancy and smoke suppression of polyurethane elastomer. J Appl Polymer Sci 2020;137:48048.  DOI
               19.      Qian Z, Zou B, Xiao Y, et al. Targeted modification of black phosphorus by MIL-53(Al) inspired by “Cannikin's Law” to achieve high
                   thermal stability of flame retardant polycarbonate at ultra-low additions. Compos B Eng 2022;238:109943.  DOI
               20.      Ma T, Wang W, Wang R. Thermal degradation and carbonization mechanism of Fe-based metal-organic frameworks onto flame-
                   retardant polyethylene terephthalate. Polymers 2023;15:224.  DOI  PubMed  PMC
               21.      Zhao H, Yuan B, Zhan Y, et al. Upgrading the pore-size scale of MIL-53 from microporous to macroporous for adsorbing triethyl
                   phosphate and reducing the fire risk of polystyrene. Compos A Appl Sci Manuf 2022;159:107003.  DOI
               22.      Xu B, Xu W, Wang G, Liu L, Xu J. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the
                   fire risk of epoxy resin. Polym Adv Techs 2018;29:1733-43.  DOI
               23.      Sai T, Ran S, Guo Z, Fang Z. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of
                   polycarbonate. Compos B Eng 2019;176:107198.  DOI
               24.      Salmeia KA, Fage J, Liang S, Gaan S. An overview of mode of action and analytical methods for evaluation of gas phase activities of
                   flame retardants. Polymers 2015;7:504-26.  DOI
               25.      Molyneux S, Stec AA, Hull TR. The effect of gas phase flame retardants on fire effluent toxicity. Polym Degrad Stab 2014;106:36-46.
                   DOI
               26.      Schartel B, Perret B, Dittrich B, et al. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol
                   Mater Eng 2016;301:9-35.  DOI
               27.      Bao C, Guo Y, Yuan B, Hu Y, Song L. Functionalized graphene oxide for fire safety applications of polymers: a combination of
                   condensed phase flame retardant strategies. J Mater Chem 2012;22:23057-63.  DOI
               28.      Xu Z, Xing W, Hou Y, et al. The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic
                   frameworks (MOF) nanocomposite. Combust Flame 2021;226:108-16.  DOI
               29.      Laoutid  F,  Bonnaud  L,  Alexandre  M,  Lopez-Cuesta JM, Dubois Ph.  New  prospects  in  flame  retardant  polymer  materials:
                   from  fundamentals  to nanocomposites. Mater Sci Eng R Rep 2009;63:100-25.  DOI
               30.      Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal
                   of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicol Environ Saf 2021;208:111577.  DOI
               31.      Tomar S, Singh V. Review on synthesis and application of MIL-53. Mater Today Proc 2021;43:3291-6.  DOI
               32.      Şahin F, Topuz B, Kalıpçılar H. Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors. Microporous Mesoporous
                   Mater 2018;261:259-67.  DOI
               33.      Lee Y, Jang M, Cho H, Kwon H, Kim S, Ahn W. ZIF-8: a comparison of synthesis methods. Chem Eng J 2015;271:276-80.  DOI
               34.      Bagi SD, Myerson AS, Román-leshkov Y. Solvothermal crystallization kinetics and control of crystal size distribution of MOF-808 in
                   a continuous flow reactor. Cryst Growth Des 2021;21:6529-36.  DOI
               35.      Batten MP, Rubio-martinez M, Hadley T, et al. Continuous flow production of metal-organic frameworks. Curr Opin Chem Eng
                   2015;8:55-9.  DOI
               36.      Dunne PW, Lester E, Walton RI. Towards scalable and controlled synthesis of metal-organic framework materials using continuous
                   flow reactors. React Chem Eng 2016;1:352-60.  DOI
               37.      Amery N, Abid H, Al-saadi S, Wang S, Liu S. Facile directions for synthesis, modification and activation of MOFs. Mater Today
                   Chem 2020;17:100343.  DOI
               38.      Liu X, Xie L, Wu Y. Recent advances in the shaping of metal-organic frameworks. Inorg Chem Front 2020;7:2840-66.  DOI
               39.      Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at
                   scale. Chem Soc Rev 2017;46:3453-80.  DOI  PubMed
               40.      Bagi S, Yuan S, Rojas-buzo S, Shao-horn Y, Román-leshkov Y. A continuous flow chemistry approach for the ultrafast and low-cost
                   synthesis of MOF-808. Green Chem 2021;23:9982-91.  DOI
               41.      Kochetygov I, Roth J, Espín J, et al. A simple, transition metal catalyst-free method for the design of complex organic building blocks
                   used to construct porous metal-organic frameworks. Angew Chem Int Ed Eng 2023;62:e202215595.  DOI
               42.      Shen R, Quan Y, Zhang Z, Ma R, Wang Q. Metal-organic framework as an efficient synergist for intumescent flame retardants against
                   highly flammable polypropylene. Ind Eng Chem Res 2022;61:7292-302.  DOI
   228   229   230   231   232   233   234   235   236   237   238