Page 234 - Read Online
P. 234

Page 16 of 17         Hou et al. Microstructures 2023;3:2023039  https://dx.doi.org/10.20517/microstructures.2023.37

               43.      Xu Y, Zhou R, Ma G, et al. Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame
                   retardant by compounding with melamine polyphosphate. Polym Test 2022;116:107765.  DOI
               44.      Chen X, Chen X, Li S, Jiao C. Copper metal-organic framework toward flame-retardant enhancement of thermoplastic polyurethane
                   elastomer composites based on ammonium polyphosphate. Polym Adv Technol 2021;32:2829-42.  DOI
               45.      Li H, Meng D, Qi P, et al. Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire
                   hazards in thermoplastic polyurethane. Appl Clay Sci 2022;216:106376.  DOI
               46.      Liu Q, Wang H, Li H, Sun J, Gu X, Zhang S. Constructing a novel synergistic flame retardant by hybridization of zeolitic imidazolate
                   framework-67 and graphene oxide for thermoplastic polyurethane. Poly Adv Technol 2022;33:2374-85.  DOI
               47.      Yue Z, Lin J, Yang D, et al. In situ growth of nano-MOFs on ammonium polyphosphate particles for boosting flame retardancy, smoke
                   suppression and mechanical properties of epoxy. J Mater Sci 2022;57:20082-94.  DOI
               48.      Jiang J, Huo S, Zheng Y, et al. A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin. Polymers
                   2021;13:3648.  DOI  PubMed  PMC
               49.      Quan Y, Shen R, Schweizer C, et al. Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on
                   intumescent flame-retarded polypropylene composites: a comparative study. J Mater Sci Technol 2023;155:102-10.  DOI
               50.      Escobar-hernandez HU, Shen R, Papadaki MI, Powell JA, Zhou H, Wang Q. Hazard evaluation of metal-organic framework synthesis
                   and scale-up: a laboratory safety perspective. ACS Chem Health Saf 2021;28:358-68.  DOI
               51.      Quan Y, Parker TF, Hua Y, Jeong H, Wang Q. Process elucidation and hazard analysis of the metal-organic framework scale-up
                   synthesis: a case study of ZIF-8. Ind Eng Chem Res 2023;62:5035-41.  DOI
               52.      Quan Y, Shen R, Ma R, Zhang Z, Wang Q. Sustainable and efficient manufacturing of metal-organic framework-based polymer
                   nanocomposites by reactive extrusion. ACS Sustain Chem Eng 2022;10:7216-22.  DOI
               53.      Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.  DOI
               54.      Murdock AT, Koos A, Britton TB, et al. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition
                   graphene. ACS Nano 2013;7:1351-9.  DOI
               55.      Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol
                   2008;3:563-8.  DOI
               56.      Agarwal V, Zetterlund PB. Strategies for reduction of graphene oxide - a comprehensive review. Chem Eng J 2021;405:127018.  DOI
               57.      Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization. Nat Nanotechnol 2014;9:730-4.  DOI  PubMed
               58.      Milana S. The lab-to-fab journey of 2D materials. Nat Nanotechnol 2019;14:919-21.  DOI
               59.      Zhou Y, Qiu S, Chu F, et al. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure:
                   enhanced adsorption, mechanical and fire safety properties. J Colloid Interface Sci 2022;609:794-806.  DOI
               60.      Piao J, Lu M, Ren J, et al. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water
                   separation: Interface engineering design based on bioinspiration. J Hazard Mater 2023;444:130398.  DOI
               61.      Zhao X, Qiu H, Shao Y, et al. Silver nanoparticle-modified 2D MOF nanosheets for photothermally enhanced silver ion release
                   antibacterial treatment. Acta Physico Chimica Sinica 2023;39:2211043.  DOI
               62.      Majidi R, Keramatinia M, Ramezanzadeh B, Ramezanzadeh M. Weathering resistance (UV-shielding) improvement of a polyurethane
                   automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7). Polym Degrad Stab
                   2023;207:110211.  DOI
               63.      Wang C, Kim J, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020;6:19-
                   40.  DOI
               64.      Ren J, Huang Y, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020;2:176-202.
                   DOI
               65.      Marpaung F, Kim M, Khan JH, et al. Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem Asian J
                   2019;14:1331-43.  DOI
               66.      Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their
                   promising applications. J Mater Chem A 2013;1:14-9.  DOI
               67.      Hou Y, Xu Z, Chu F, et al. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites.
                   Compos B Eng 2021;221:109014.  DOI
               68.      Sai T, Su Y, Shen H, et al. Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of
                   polycarbonate with superior thermostability and toughness. ACS Appl Mater Interfaces 2021;13:30061-75.  DOI
               69.      Lu X, Lee AF, Gu X. Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated
                   cobalt metal-organic frameworks. Mater Today Chem 2022;26:101184.  DOI
               70.      Zulys A, Yulia F, Muhadzib N, Nasruddin. Biological metal-organic frameworks (Bio-MOFs) for CO  capture. Ind Eng Chem Res
                                                                                       2
                   2021;60:37-51.  DOI
               71.      Nabipour H, Qiu S, Wang X, Song L, Hu Y. Adenine as an efficient adsorbent for zinc ions removal from wastewater to in situ form
                   bio-based metal-organic frameworks: a novel approach to preparing fire-safe polymers. Compos A Appl Sci Manuf 2022;161:107099.
                   DOI
               72.      Zhou Y, Tawiah B, Noor N, et al. A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced
                   poly(lactic acid) composites using fully bio-based complexing couples. Compos B Eng 2021;215:108833.  DOI
               73.      Hamisu AM, Ariffin A, Wibowo AC. Cation exchange in metal-organic frameworks (MOFs): the hard-soft acid-base (HSAB)
   229   230   231   232   233   234   235   236   237   238   239