Page 140 - Read Online
P. 140

Page 12 of 13          Xu et al. Microstructures 2023;3:2023034  https://dx.doi.org/10.20517/microstructures.2023.19

               12.      Yuan Q, Li G, Yao F, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered
                   BaTiO -Bi(Mg Zr )O  lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.  DOI
                        3    0.5  0.5  3
               13.      Zeng D, Dong Q, Nong P, et al. Achieving high energy storage density in BaTiO - (Bi Li )(Ti Sn )O  lead-free relaxor
                                                                                          0.5
                                                                                       0.5
                                                                                   0.5
                                                                                0.5
                                                                                             3
                                                                             3
                   ferroelectric ceramics. J Alloys Compd 2023;937:168455.  DOI
               14.      Dong X, Li X, Chen H, et al. Realizing enhanced energy storage and hardness performances in 0.90NaNbO -0.10Bi(Zn Sn )O
                                                                                           3       0.5  0.5  3
                   ceramics. J Adv Ceram 2022;11:729-41.  DOI
               15.      Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A
                   1976;32:751-67.  DOI
               16.      Hreščak J, Dražić G, Deluca M, et al. Donor doping of K Na NbO  ceramics with strontium and its implications to grain size, phase
                                                        0.5
                                                           0.5
                                                                3
                   composition and crystal structure. J Eur Ceram Soc 2017;37:2073-82.  DOI
               17.      Schulz T, Veerapandiyan VK, Gindel T, Deluca M, Töpfer J. Hexavalent (Me - W/Mo)-modified (Ba,Ca)TiO -Bi(Mg,Me)O   3
                                                                                                3
                   perovskites for high-temperature dielectrics. J Am Ceram Soc 2020;103:6881-92.  DOI
               18.      Chen H, Wang X, Dong X, et al. Adjusting the energy-storage characteristics of 0.95NaNbO -0.05Bi(Mg Sn )O  ceramics by
                                                                                  3        0.5  0.5  3
                   doping linear perovskite materials. ACS Appl Mater Interfaces 2022;14:25609-19.  DOI
               19.      Shi J, Chen X, Sun C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in
                   NaNbO -based lead-free ceramics. Ceram Int 2020;46:25731-7.  DOI
                        3
               20.      Xie  A,  Qi  H,  Zuo  R.  Achieving  remarkable  amplification  of  energy-storage  density  in  two-step  sintered  NaNbO -SrTiO
                                                                                                    3
                                                                                                         3
                   antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl Mater Interfaces 2020;12:19467-
                   75.  DOI  PubMed
               21.      Dai  Z,  Xie  J,  Fan  X,  et  al.  Enhanced  energy  storage  properties  and  stability  of  Sr(Sc Nb )O   modified
                                                                                           0.5  0.5  3
                   0.65BaTiO -0.35Bi Na TiO  ceramics. Chem Eng J 2020;397:125520.  DOI
                                   0.5
                                       3
                          3
                                0.5
               22.      Wang  H,  Yuan  H,  Li  X,  et  al.  Enhanced  energy  density  and  discharged  efficiency  of  lead-free  relaxor
                   (1-x)[(Bi Na )  Ba 0.06 0.98 La 0.02 TiO KNb Ta O  ceramic capacitors. Chem Eng J 2020;394:124879.  DOI
                                   ]
                         0.5
                                                   0.4
                                                     3
                                           3-x
                                                0.6
                            0.5 0.94
               23.      Li X, Xing J, Wang F, et al. Realizing high energy density and efficiency simultaneously in (Bi Na ) Sr TiO -based ceramics via
                                                                                         0.3
                                                                                 0.5
                                                                                    0.5 0.7
                                                                                             3
                   introducing linear dielectric CaTiO . J Mater Chem A 2022;10:18343-53.  DOI
                                          3
               24.      Liu G, Chen L, Qi H. Energy storage properties of NaNbO -based lead-free superparaelectrics with large antiferrodistortion.
                                                            3
                   Microstructures 2023;3:2023009.  DOI
               25.      Xie A, Chen J, Zuo J, et al. Excellent energy-storage performance of (0.85 - x)NaNbO -xNaSbO -0.15(Na La )TiO  antiferroelectric
                                                                           3     3     0.5  0.5  3
                                     5+
                   ceramics through B-site Sb  driven phase transition. ACS Appl Mater Interfaces 2023;15:22301-9.  DOI
               26.      Pang  F,  Chen  X,  Shi  J,  et  al.  Bi(Mg Sn )O -doped  NaNbO   lead-free  ceramics  achieve  excellent  energy-storage  and
                                              0.5  0.5  3       3
                   charge/discharge performances. ACS Sustain Chem Eng 2021;9:4863-71.  DOI
               27.      Ding Y, Li P, He J, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO -based relaxor
                                                                                                3
                   ferroelectrics by ion selective engineering. Compos B Eng 2022;230:109493.  DOI
               28.      Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO -based lead-free ceramic capacitors featuring high energy storage density, high
                                                     3
                   power density, and excellent stability. J Mater Chem C 2018;6:8528-37.  DOI
               29.      Yadav AK, Fan H, Yan B, et al. High strain and high energy density of lead-free (Bi  Na  K  )  Ba  Ti  (Al  Ta  ) O
                                                                             0.50  0.40  0.10 0.94  0.06  (1−x)  0.50  0.50 x  3
                   perovskite ceramics. J Mater Sci 2020;55:11137-50.  DOI
               30.      Li T, Chen P, Li F, Wang C. Energy storage performance of Na Bi TiO -SrTiO  lead-free relaxors modified by AgNb  Ta  O .
                                                             0.5  0.5  3  3                       0.85  0.15  3
                   Chem Eng J 2021;406:127151.  DOI
               31.      Li X, Tan Z, Xing J, et al. Simultaneous enhancement of energy storage and hardness performances in (Na Bi ) Sr TiO -based
                                                                                             0.5 0.7
                                                                                                     3
                                                                                          0.5
                                                                                                 0.3
                   relaxor ferroelectrics via multiscale regulation. ACS Appl Mater Interfaces 2022;14:42245-57.  DOI
               32.      Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc
                   2018;101:5487-96.  DOI
               33.      Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S. Multifunctionality of lead-free BiFeO -based ergodic relaxor ferroelectric ceramics: high
                                                                         3
                   energy storage performance and electrocaloric effect. J Alloys Compd 2019;803:185-92.  DOI
                                                                                                    3+
               34.      Zhao  N,  Fan  H,  Li  C,  Huang  F,  Cao  J,  Li  Z.  Enhanced  energy  storage  density  and  efficiency  in  Sm -doped
                   ((Bi Na ) (Sr Bi ) ))TiO  ceramics. J Mater Sci Mater Electron 2021;32:24930-8.  DOI
                      0.5
                         0.5 0.7
                                 0.2 0.3
                              0.7
                                       3
               35.      Zhang M, Yang H, Li D, Lin Y. Excellent energy density and power density achieved in K Na NbO -based ceramics with high
                                                                                0.5
                                                                                        3
                                                                                   0.5
                   optical transparency. J Alloys Compd 2020;829:154565.  DOI
               36.      Pu Y, Wang W, Guo X, Shi R, Yang M, Li J. Enhancing the energy storage properties of Ca Sr TiO -based lead-free linear
                                                                                          3
                                                                                   0.5
                                                                                      0.5
                   dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C 2019;7:14384-93.  DOI
               37.      Dong X, Li X, Chen X, Wu J, Zhou H. Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO -based
                                                                                                     3
                   ceramics. Chem Eng J 2021;409:128231.  DOI
               38.      Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO -Bi(Mg Ti )O  lead-free
                                                                                        3    0.5  0.5  3
                   ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9.  DOI
               39.      Muhammad R, Ali A, Camargo J, et al. Enhanced thermal stability in dielectric properties of NaNbO -modified BaTiO -BiMg Ti O   3
                                                                                                       1/2
                                                                                               3
                                                                                                    1/2
                                                                                    3
                   ceramics for X9R-MLCC applications. Crystals 2022;12:141.  DOI
               40.      Xu M, Wang X, Nong P, et al. 0.90(0.88NaNbO -0.12Bi(Ni Zr )O )-0.10CaTiO  lead-free dielectric ceramics with high energy
                                                            0.5
                                                    3
                                                              0.5
                                                                          3
                                                                 3
                   storage properties. ACS Appl Energy Mater 2023;6:1630-8.  DOI
   135   136   137   138   139   140   141   142   143   144   145