Page 115 - Read Online
P. 115
Page 18 of 21 Sun et al. Microstructures 2023;3:2023032 https://dx.doi.org/10.20517/microstructures.2023.32
16. Lei Z, Xue Y, Chen W, et al. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO conversion. Adv Energy
2
Mater 2018;8:1801587. DOI
17. Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science
2016;353:141-4. DOI
18. Fu HR, Jiang YY, Luo JH, Li T. A robust heterometallic Cd(II)/Ba(II)-organic framework with exposed amino group and active sites
exhibiting excellent CO 2/CH 4 and C 2H 2/CH 4 Separation. Chin J Struct Chem 2022;41:2203287-92. Available from: https://www.
sciencedirect.com/science/article/abs/pii/S0254586123002180 [Last accessed on 11 Aug 2023].
19. Usman M, Iqbal N, Noor T, et al. Advanced strategies in metal-organic frameworks for CO capture and separation. Chem Rec
2
2022;22:e202100230. DOI
20. Zhang X, Wang X, Fan W, Sun D. Pore-environment engineering in multifunctional metal-organic frameworks. Chin J Chem
2020;38:509-24. DOI
21. Bhardwaj A, Kaur J, Wuest M, Wuest F. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun 2017;8:1.
DOI PubMed PMC
22. Palluet A, Lique F. Fine-structure excitation of CCS by He: potential energy surface and scattering calculations. J Chem Phys
2023;158:044303. DOI PubMed
23. Harvey S, Hopkins J, Kuehl H, O'brien S, Mateeva A. Quest CCS facility: time-lapse seismic campaigns. Int J Greenh Gas Control
2022;117:103665. DOI
24. Li J, Ma Y, Mccarthy MC, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord
Chem Rev 2011;255:1791-823. DOI
25. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 2010;49:6058-82.
DOI PubMed
26. Fominykh S, Stankovski S, Markovic VM, Petrovic D, Osmanović S. Analysis of CO migration in horizontal saline aquifers during
2
carbon capture and storage process. Sustain 2023;15:8912. DOI
27. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for robust and multifunctional
MOF materials. Chem Soc Rev 2018;47:8611-38. DOI PubMed
28. Jansen D, Gazzani M, Manzolini G, Dijk EV, Carbo M. Pre-combustion CO capture. Int J Greenh Gas Control 2015;40:167-87.
2
DOI
29. Kheirinik M, Ahmed S, Rahmanian N. Comparative techno-economic analysis of carbon capture processes: pre-combustion, post-
combustion, and oxy-fuel combustion operations. Sustain 2021;13:13567. DOI
30. Maffei T, Khatami R, Pierucci S, Faravelli T, Ranzi E, Levendis YA. Experimental and modeling study of single coal particle
combustion in O /N and oxy-fuel (O /CO ) atmospheres. Combust Flame 2013;160:2559-72. DOI
2 2 2 2
31. Cau G, Tola V, Ferrara F, Porcu A, Pettinau A. CO -free coal-fired power generation by partial oxy-fuel and post-combustion CO
2 2
capture: techno-economic analysis. Fuel 2018;214:423-35. DOI
32. Sircar S, Golden TC. Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 2000;35:667-87. DOI
33. Chao C, Deng Y, Dewil R, Baeyens J, Fan X. Post-combustion carbon capture. Renew Sustain Energ 2021;138:110490. DOI
34. Dinca C, Slavu N, Badea A. Benchmarking of the pre/post-combustion chemical absorption for the CO capture. J Energy Inst
2
2018;91:445-56. DOI
35. Na S, Hwang SJ, Kim H, Baek I, Lee KS. Modeling of CO solubility of an aqueous polyamine solvent for CO capture. Chem Eng
2 2
Sci 2019;204:140-50. DOI
36. Kárászová M, Zach B, Petrusová Z, et al. Post-combustion carbon capture by membrane separation, review. Sep Purif Technol
2020;238:116448. DOI
37. Liu M, Nothling MD, Webley PA, Jin J, Fu Q, Qiao GG. High-throughput CO capture using PIM-1@MOF based thin film
2
composite membranes. Chem Eng J 2020;396:125328. DOI
38. Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with
improved interfacial interaction for high-performance CO separation. J Mater Chem A 2017;5:10968-77. DOI
2
39. Witt A, Pozzi R, Diesch S, Hädicke O, Grammel H. New light on ancient enzymes - in vitro CO fixation by pyruvate synthase of
2
desulfovibrio africanus and sulfolobus acidocaldarius. FEBS J 2019;286:4494-508. DOI PubMed
40. Hefti M, Joss L, Bjelobrk Z, Mazzotti M. On the potential of phase-change adsorbents for CO capture by temperature swing
2
adsorption. Faraday Discuss 2016;192:153-79. DOI PubMed
41. Mesfer MK, Danish M, Fahmy YM, Rashid MM. Post-combustion CO capture with activated carbons using fixed bed adsorption.
2
Heat Mass Transfer 2018;54:2715-24. DOI
42. Gutierrez-ortega A, Nomen R, Sempere J, Parra J, Montes-morán M, Gonzalez-olmos R. A fast methodology to rank adsorbents for
CO capture with temperature swing adsorption. Chem Eng J 2022;435:134703. DOI
2
43. Rehman A, Farrukh S, Hussain A, Fan X, Pervaiz E. Adsorption of CO on amine-functionalized green metal-organic framework: an
2
interaction between amine and CO molecules. Environ Sci Pollut Res Int 2019;26:36214-25. DOI PubMed
2
44. Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem
2009;2:796-854. DOI PubMed
45. Yi H, Li F, Ning P, et al. Adsorption separation of CO , CH , and N on microwave activated carbon. Chem Eng J 2013;215:635-42.
2
2
4
DOI

