Page 115 - Read Online
P. 115

Page 18 of 21         Sun et al. Microstructures 2023;3:2023032  https://dx.doi.org/10.20517/microstructures.2023.32

               16.       Lei Z, Xue Y, Chen W, et al. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO  conversion. Adv Energy
                                                                                          2
                    Mater 2018;8:1801587.  DOI
               17.       Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science
                    2016;353:141-4.  DOI
               18.       Fu HR, Jiang YY, Luo JH, Li T. A robust heterometallic Cd(II)/Ba(II)-organic framework with exposed amino group and active sites
                    exhibiting excellent CO 2/CH 4 and C 2H 2/CH 4 Separation. Chin J Struct Chem 2022;41:2203287-92.  Available from: https://www.
                    sciencedirect.com/science/article/abs/pii/S0254586123002180 [Last accessed on 11 Aug 2023].
               19.       Usman M, Iqbal N, Noor T, et al. Advanced strategies in metal-organic frameworks for CO  capture and separation. Chem Rec
                                                                                  2
                    2022;22:e202100230.  DOI
               20.       Zhang X, Wang X, Fan W, Sun D. Pore-environment engineering in multifunctional metal-organic frameworks. Chin J Chem
                    2020;38:509-24.  DOI
               21.       Bhardwaj A, Kaur J, Wuest M, Wuest F. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun 2017;8:1.
                    DOI  PubMed  PMC
               22.       Palluet A, Lique F. Fine-structure excitation of CCS by He: potential energy surface and scattering calculations. J Chem Phys
                    2023;158:044303.  DOI  PubMed
               23.       Harvey S, Hopkins J, Kuehl H, O'brien S, Mateeva A. Quest CCS facility: time-lapse seismic campaigns. Int J Greenh Gas Control
                    2022;117:103665.  DOI
               24.       Li J, Ma Y, Mccarthy MC, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord
                    Chem Rev 2011;255:1791-823.  DOI
               25.       D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 2010;49:6058-82.
                    DOI  PubMed
               26.       Fominykh S, Stankovski S, Markovic VM, Petrovic D, Osmanović S. Analysis of CO  migration in horizontal saline aquifers during
                                                                            2
                    carbon capture and storage process. Sustain 2023;15:8912.  DOI
               27.       Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for robust and multifunctional
                    MOF materials. Chem Soc Rev 2018;47:8611-38.  DOI  PubMed
               28.       Jansen D, Gazzani M, Manzolini G, Dijk EV, Carbo M. Pre-combustion CO  capture. Int J Greenh Gas Control 2015;40:167-87.
                                                                      2
                    DOI
               29.       Kheirinik M, Ahmed S, Rahmanian N. Comparative techno-economic analysis of carbon capture processes: pre-combustion, post-
                    combustion, and oxy-fuel combustion operations. Sustain 2021;13:13567.  DOI
               30.       Maffei T, Khatami R, Pierucci S, Faravelli T, Ranzi E, Levendis YA. Experimental and modeling study of single coal particle
                    combustion in O /N  and oxy-fuel (O /CO ) atmospheres. Combust Flame 2013;160:2559-72.  DOI
                               2  2         2  2
               31.       Cau G, Tola V, Ferrara F, Porcu A, Pettinau A. CO -free coal-fired power generation by partial oxy-fuel and post-combustion CO
                                                      2                                                  2
                    capture: techno-economic analysis. Fuel 2018;214:423-35.  DOI
               32.       Sircar S, Golden TC. Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 2000;35:667-87.  DOI
               33.       Chao C, Deng Y, Dewil R, Baeyens J, Fan X. Post-combustion carbon capture. Renew Sustain Energ 2021;138:110490.  DOI
               34.       Dinca C, Slavu N, Badea A. Benchmarking of the pre/post-combustion chemical absorption for the CO  capture. J Energy Inst
                                                                                          2
                    2018;91:445-56.  DOI
               35.       Na S, Hwang SJ, Kim H, Baek I, Lee KS. Modeling of CO  solubility of an aqueous polyamine solvent for CO  capture. Chem Eng
                                                           2                                2
                    Sci 2019;204:140-50.  DOI
               36.       Kárászová M, Zach B, Petrusová Z, et al. Post-combustion carbon capture by membrane separation, review. Sep Purif Technol
                    2020;238:116448.  DOI
               37.       Liu M, Nothling MD, Webley PA, Jin J, Fu Q, Qiao GG. High-throughput CO  capture using PIM-1@MOF based thin film
                                                                           2
                    composite membranes. Chem Eng J 2020;396:125328.  DOI
               38.       Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with
                    improved interfacial interaction for high-performance CO  separation. J Mater Chem A 2017;5:10968-77.  DOI
                                                         2
               39.       Witt A, Pozzi R, Diesch S, Hädicke O, Grammel H. New light on ancient enzymes - in vitro CO  fixation by pyruvate synthase of
                                                                                    2
                    desulfovibrio africanus and sulfolobus acidocaldarius. FEBS J 2019;286:4494-508.  DOI  PubMed
               40.       Hefti M, Joss L, Bjelobrk Z, Mazzotti M. On the potential of phase-change adsorbents for CO  capture by temperature swing
                                                                                     2
                    adsorption. Faraday Discuss 2016;192:153-79.  DOI  PubMed
               41.       Mesfer MK, Danish M, Fahmy YM, Rashid MM. Post-combustion CO  capture with activated carbons using fixed bed adsorption.
                                                                   2
                    Heat Mass Transfer 2018;54:2715-24.  DOI
               42.       Gutierrez-ortega A, Nomen R, Sempere J, Parra J, Montes-morán M, Gonzalez-olmos R. A fast methodology to rank adsorbents for
                    CO  capture with temperature swing adsorption. Chem Eng J 2022;435:134703.  DOI
                      2
               43.       Rehman A, Farrukh S, Hussain A, Fan X, Pervaiz E. Adsorption of CO  on amine-functionalized green metal-organic framework: an
                                                                  2
                    interaction between amine and CO  molecules. Environ Sci Pollut Res Int 2019;26:36214-25.  DOI  PubMed
                                          2
               44.       Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem
                    2009;2:796-854.  DOI  PubMed
               45.       Yi H, Li F, Ning P, et al. Adsorption separation of CO , CH , and N  on microwave activated carbon. Chem Eng J 2013;215:635-42.
                                                                2
                                                       2
                                                           4
                    DOI
   110   111   112   113   114   115   116   117   118   119   120