Page 117 - Read Online
P. 117

Page 20 of 21         Sun et al. Microstructures 2023;3:2023032  https://dx.doi.org/10.20517/microstructures.2023.32

               77.       Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev 2014;43:5468-512.  DOI  PubMed
               78.       Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and
                    applications. Chem Soc Rev 2016;45:2327-67.  DOI
               79.       Kalmutzki MJ, Hanikel N, Yaghi OM. Secondary building units as the turning point in the development of the reticular chemistry of
                    MOFs. Sci Adv 2018;4:eaat9180.  DOI  PubMed  PMC
               80.       Moghadam PZ, Li A, Wiggin SB, et al. Development of a cambridge structural database subset: a collection of metal-organic
                    frameworks for past, present, and future. Chem Mater 2017;29:2618-25.  DOI
               81.       Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 2009;48:7502-13.  DOI
                    PubMed
               82.       Morris RV, Ruff SW, Gellert R, et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 2010;329:421-4.
                    DOI
               83.       Suh MP, Park HJ, Prasad TK, Lim DW. Hydrogen storage in metal-organic frameworks. Chem Rev 2012;112:782-835.  DOI
                    PubMed
               84.       He Y, Zhou W, Qian G, Chen B. Methane storage in metal-organic frameworks. Chem Soc Rev 2014;43:5657-78.  DOI  PubMed
               85.       Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-metal MOFs: unique opportunities in metal-organic framework
                    (MOF) functionality and design. Angew Chem Int Ed 2019;58:15188-205.  DOI  PubMed
               86.       Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future
                    perspectives. Mater Today 2022;55:137-69.  DOI
               87.       Small LJ, Henkelis SE, Rademacher DX, et al. Near-zero power MOF-based sensors for NO  detection. Adv Funct Mater
                                                                                     2
                    2020;30:2006598.  DOI
               88.       Hausdorf S, Baitalow F, Böhle T, Rafaja D, Mertens FO. Main-group and transition-element IRMOF homologues. J Am Chem Soc
                    2010;132:10978-81.  DOI  PubMed
               89.       Titi HM, Marrett JM, Dayaker G, et al. Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: unlocking
                    the latent energetic behavior of ZIFs. Sci Adv 2019;5:eaav9044.  DOI  PubMed  PMC
               90.       Yang S, Li X, Zeng G, et al. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord Chem Rev
                    2021;438:213874.  DOI
               91.       Yang J, Yang K, Zhu X, et al. Band engineering of non-metal modified polymeric carbon nitride with broad spectral response for
                    enhancing photocatalytic CO  reduction. Chem Eng J 2023;461:141841.  DOI
                                       2
               92.       Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H. A robust sulfonate-based metal-organic framework with permanent porosity for efficient
                    CO  capture and conversion. Chem Mater 2016;28:6276-81.  DOI
                      2
               93.       Liu Y, Wang ZU, Zhou H. Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gas Sci Technol
                    2012;2:239-59.  DOI
               94.       Quílez-bermejo J, Melle-franco M, San-fabián E, Morallón E, Cazorla-amorós D. Towards understanding the active sites for the ORR
                    in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach. J Mater
                    Chem A 2019;7:24239-50.  DOI
               95.       Serra-crespo P, Ramos-fernandez EV, Gascon J, Kapteijn F. Synthesis and characterization of an amino functionalized MIL-101(Al):
                    separation and catalytic properties. Chem Mater 2011;23:2565-72.  DOI
               96.       Dinakar B, Forse AC, Jiang HZH, et al. Overcoming metastable CO  adsorption in a bulky diamine-appended metal-organic
                                                                   2
                    framework. J Am Chem Soc 2021;143:15258-70.  DOI
               97.       Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H. Polyamine-tethered porous polymer networks for carbon dioxide capture from
                    flue gas. Angew Chem Int Ed 2012;51:7480-4.  DOI  PubMed
               98.       Khan J, Iqbal N, Asghar A, Noor T. Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide
                    capture. Mater Res Express 2019;6:105539.  DOI
               99.       Mcdonald  TM,  D'alessandro  DM,  Krishna  R,  Long  JR.  Enhanced  carbon  dioxide  capture  upon  incorporation  of  N,N’-
                    dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2011;2:2022-8.  DOI
               100.      Tu S, Yu L, Liu J, et al. Efficient CO  capture under humid conditions on a novel amide-functionalized Fe-soc metal-organic
                                              2
                    framework. ACS Appl Mater Interfaces 2023;15:12240-7.  DOI
               101.      Lyu H, Chen OI, Hanikel N, et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in
                    humid flue gas. J Am Chem Soc 2022;144:2387-96.  DOI
               102.      Zhang Z, Ding Q, Peh SB, et al. Mechano-assisted synthesis of an ultramicroporous metal-organic framework for trace CO  capture.
                                                                                                    2
                    Chem Commun 2020;56:7726-9.  DOI
               103.      Peng YL, Pham T, Li P, et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew
                    Chem Int Ed 2018;57:10971-5.  DOI
               104.      Bhatt PM, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO  removal and air capture
                                                                                          2
                    using physisorption. J Am Chem Soc 2016;138:9301-7.  DOI
               105.      Zhang Z, Ding Q, Cui J, Cui X, Xing H. High and selective capture of low-concentration CO  with an anion-functionalized
                                                                                     2
                    ultramicroporous metal-organic framework. Sci China Mater 2021;64:691-7.  DOI
               106.      Chakraborty G, Das P, Mandal SK. Polar sulfone-functionalized oxygen-rich metal-organic frameworks for highly selective CO
                                                                                                         2
                    capture and sensitive detection of acetylacetone at ppb level. ACS Appl Mater Interfaces 2020;12:11724-36.  DOI  PubMed
   112   113   114   115   116   117   118   119   120   121   122