Page 118 - Read Online
P. 118

Sun et al. Microstructures 2023;3:2023032  https://dx.doi.org/10.20517/microstructures.2023.32  Page 21 of 21

               107.      Lin RB, Chen D, Lin YY, Zhang JP, Chen XM. A zeolite-like zinc triazolate framework with high gas adsorption and separation
                    performance. Inorg Chem 2012;51:9950-5.  DOI  PubMed
               108.      Lin R, Xiang S, Zhou W, Chen B. Microporous metal-organic framework materials for gas separation. Chem 2020;6:337-63.  DOI
               109.      Fan W, Wang X, Zhang X, et al. Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and
                    efficient separation of light hydrocarbons. ACS Cent Sci 2019;5:1261-8.  DOI  PubMed  PMC
               110.      Jo D, Lee SK, Cho KH, Yoon JW, Lee UH. An Amine-functionalized ultramicroporous metal-organic framework for postcombustion
                    CO  capture. ACS Appl Mater Interfaces 2022;14:56707-14.  DOI  PubMed
                      2
               111.      Lin JB, Nguyen TTT, Vaidhyanathan R, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide
                    capture. Science 2021;374:1464-9.  DOI
               112.      Oschatz M, Antonietti M. A search for selectivity to enable CO  capture with porous adsorbents. Energy Environ Sci 2018;11:57-70.
                                                             2
                    DOI
               113.      Qazvini OT, Babarao R, Telfer SG. Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat
                    Commun 2021;12:197.  DOI  PubMed  PMC
               114.      Chowdhury P, Mekala S, Dreisbach F, Gumma S. Adsorption of CO, CO  and CH  on Cu-BTC and MIL-101 metal organic
                                                                       2     4
                    frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater 2012;152:246-52.  DOI
               115.      Kökçam-Demir Ü, Goldman A, Esrafili L, et al. Coordinatively unsaturated metal sites (open metal sites) in metal-organic
                    frameworks: design and applications. Chem Soc Rev 2020;49:2751-98.  DOI
               116.      Lim D, Chyun SA, Suh MP. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts
                    as specific cation binding sites. Angew Chem Int Ed 2014;126:7953-6.  DOI
               117.      Shin SR, Cho HS, Lee Y, et al. In Situ mapping and local negative uptake behavior of adsorbates in individual pores of metal-organic
                    frameworks. J Am Chem Soc 2021;143:20747-57.  DOI
               118.      Chen K, Kang YS, Zhao Y, Yang JM, Lu Y, Sun WY. Cucurbit[6]uril-based supramolecular assemblies: possible application in
                    radioactive cesium cation capture. J Am Chem Soc 2014;136:16744-7.  DOI
                                                +
               119.      Li N, Chang Z, Huang H, et al. Specific K  binding sites as CO  traps in a porous MOF for enhanced CO  selective sorption. Small
                                                              2                          2
                    2019;15:e1900426.  DOI
               120.      Zhao X, Bu X, Zhai QG, Tran H, Feng P. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning
                    on carbon dioxide uptake. J Am Chem Soc 2015;137:1396-9.  DOI  PubMed
               121.      Oh JM, Venters CC, Di C, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun 2020;11:1.  DOI
                    PubMed  PMC
               122.      Balogun HA, Bahamon D, Almenhali S, Vega LF, Alhajaj A. Are we missing something when evaluating adsorbents for CO  capture
                                                                                                    2
                    at the system level? Energy Environ Sci 2021;14:6360-80.  DOI
               123.      Wang Q, Ke T, Yang L, et al. Cover picture: separation of Xe from Kr with record selectivity and productivity in anion-pillared
                    ultramicroporous materials by inverse size-sieving. Angew Chem Int Ed 2020;59:3341.  DOI
               124.      Chen Y, Qiao Z, Lv D, et al. Efficient adsorptive separation of C H  over C H  on flexible and thermoresponsive CPL-1. Chem Eng J
                                                              3  6   3  8
                    2017;328:360-7.  DOI
               125.      Peng J, Liu Z, Wu Y, Xian S, Li Z. High-performance selective CO  capture on a stable and flexible metal-organic framework via
                                                                 2
                    discriminatory gate-opening effect. ACS Appl Mater Interfaces 2022;14:21089-97.  DOI
               126.      Jiang Y, Tan P, Qi S, et al. Cover picture: metal-organic frameworks with target-specific active sites switched by photoresponsive
                    motifs: efficient adsorbents for tailorable CO  capture. Angew Chem Int Ed 2019;58:6457.  DOI
                                                 2
               127.      Cairns AJ, Perman JA, Wojtas L, et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks
                    based on a molecular cubohemioctahedron. J Am Chem Soc 2008;130:1560-1.  DOI
               128.      Song X, Zhang M, Chen C, et al. Pure-supramolecular-linker approach to highly connected metal-organic frameworks for CO
                                                                                                         2
                    capture. J Am Chem Soc 2019;141:14539-43.  DOI
   113   114   115   116   117   118   119   120   121   122   123