Page 116 - Read Online
P. 116

Sun et al. Microstructures 2023;3:2023032  https://dx.doi.org/10.20517/microstructures.2023.32  Page 19 of 21

               46.       Jung Y, Ko YG, Nah IW, Choi US. Designing large-sized and spherical CO  adsorbents for highly reversible CO  capture and low
                                                                                              2
                                                                      2
                    pressure drop. Chem Eng J 2022;427:131781.  DOI
               47.       Wahby A, Silvestre-albero J, Sepúlveda-escribano A, Rodríguez-reinoso F. CO  adsorption on carbon molecular sieves. Microporous
                                                                       2
                    Mesoporous Mater 2012;164:280-7.  DOI
               48.       Li S, Gallucci F. CO  capture and activation with a plasma-sorbent system. Chem Eng J 2022;430:132979.  DOI
                                 2
               49.       Zhang Q, Gao S, Yu J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem Rev 2023;123:6039-106.  DOI
               50.       Su F, Lu C. CO  capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ
                              2
                    Sci 2012;5:9021.  DOI
               51.       Hong SH, Jang MS, Cho SJ, Ahn WS. Chabazite and zeolite 13X for CO  capture under high pressure and moderate temperature
                                                                     2
                    conditions. Chem Commun 2014;50:4927-30.  DOI  PubMed
               52.       Shang J, Li G, Singh R, Xiao P, Liu JZ, Webley PA. Determination of composition range for “molecular trapdoor” effect in chabazite
                    zeolite. J Phys Chem C 2013;117:12841-7.  DOI
               53.       Remy T, Peter SA, Van Tendeloo L, et al. Adsorption and separation of CO  on KFI zeolites: effect of cation type and Si/Al ratio on
                                                                     2
                    equilibrium and kinetic properties. Langmuir 2013;29:4998-5012.  DOI
               54.       Fiuza RA Jr, Medeiros de Jesus Neto R, Correia LB, Carvalho Andrade HM. Preparation of granular activated carbons from yellow
                    mombin fruit stones for CO  adsorption. J Environ Manage 2015;161:198-205.  DOI  PubMed
                                      2
               55.       Xu D, Xiao P, Zhang J, et al. Effects of water vapour on CO  capture with vacuum swing adsorption using activated carbon. Chem
                                                            2
                    Eng J 2013;230:64-72.  DOI
               56.       Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F. Investigation of the MOF adsorbents and the gas adsorptive separation
                    mechanisms. J Environ Chem Eng 2021;9:104790.  DOI
               57.       Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. Progress in adsorption-based CO  capture by metal-organic frameworks. Chem
                                                                            2
                    Soc Rev 2012;41:2308-22.  DOI  PubMed
               58.       Zheng D, Yu Q, Heng Y, Cheng PL. Recent advances in C  gases separation and purification by metal-organic frameworks. Chin J
                                                           2
                    Struct Chem 2022;41:2211031-44. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0254586123002441 [Last
                    accessed on 11 Aug 2023].
               59.       Wong-Foy AG, Matzger AJ, Yaghi OM. Exceptional H  saturation uptake in microporous metal-organic frameworks. J Am Chem Soc
                                                        2
                    2006;128:3494-5.  DOI  PubMed
               60.       Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in
                    methane storage. Science 2002;295:469-72.  DOI
               61.       Salahuddin U, Iqbal N, Noor T, et al. ZIF-67 Derived MnO  doped electrocatalyst for oxygen reduction reaction. Catalysts
                                                              2
                    2021;11:92.  DOI
               62.       Zhu C, Zhao B, Takata M, Aoki Y, Habazaki H. Biomass derived porous carbon for superior electrocatalysts for oxygen reduction
                    reaction. J Appl Electrochem 2023;53:1379-88.  DOI
               63.       Yaqoob L, Noor T, Iqbal N, Nasir H, Mumtaz A. Electrocatalytic performance of NiNH BDC MOF based composites with rGO for
                                                                             2
                    methanol oxidation reaction. Sci Rep 2021;11:13402.  DOI  PubMed  PMC
               64.       Usman M, Ali M, Al-Maythalony BA, et al. Highly efficient permeation and separation of gases with metal-organic frameworks
                    confined in polymeric nanochannels. ACS Appl Mater Interfaces 2020;12:49992-50001.  DOI
               65.       Jiang H, Jia J, Shkurenko A, et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of
                    intricate mixed-linker metal-organic framework platforms. J Am Chem Soc 2018;140:8858-67.  DOI
               66.       Ming Y, Purewal J, Yang J, et al. Kinetic stability of MOF-5 in humid environments: impact of powder densification, humidity level,
                    and exposure time. Langmuir 2015;31:4988-95.  DOI
               67.       Gu Y, Wang Y, Zhao S, et al. N-donating and water-resistant Zn-carboxylate frameworks for humid carbon dioxide capture from flue
                    gas. Fuel 2023;336:126793.  DOI
               68.       Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev 2012;112:869-932.  DOI  PubMed
               69.       Zhang Z, Yao Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO  capture and separation. Energy
                                                                                    2
                    Environ Sci 2014;7:2868.  DOI
               70.       Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO  capture using solid sorbents: a review. Ind Eng Chem
                                                                      2
                    Res 2012;51:1438-63.  DOI
               71.       Zhang J, Singh R, Webley PA. Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO  capture.
                                                                                                    2
                    Microporous Mesoporous Mater 2008;111:478-87.  DOI
               72.       Zhou  C,  Li  H,  Qin  H,  et  al.  Defective  UiO-66-NH   monoliths  for  optimizing  CO   capture  performance.  Chem  Eng  J
                                                                                2
                                                         2
                    2023;467:143394.  DOI
               73.       Patel HA, Byun J, Yavuz CT. Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 2017;10:1303-17.  DOI
                    PubMed
               74.       Yu H, Li B, Liu S, et al. Three new copper(II) coordination polymers constructed from isomeric sulfo-functionalized phthalate
                    tectonics: synthesis, crystal structure, photocatalytic and proton conduction properties. J Solid State Chem 2021;294:121860.  DOI
               75.       O’Keeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their
                    underlying nets. Chem Rev 2012;112:675-702.  DOI  PubMed
               76.       Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and
                    composites. Chem Rev 2012;112:933-69.  DOI  PubMed
   111   112   113   114   115   116   117   118   119   120   121