Page 92 - Read Online
P. 92

Liu et al. Microstructures 2023;3:2023020  https://dx.doi.org/10.20517/microstructures.2023.02  Page 27 of 27

               100.      Scully JC. Mechanism of dissolution-controlled cracking. Metal Sci 1978;12:290-300.  DOI
               101.      Liu H. A unified model of environment-assisted cracking. Acta Mater 2008;56:4339-48.  DOI
               102.      Mcmahon C. Hydrogen-induced intergranular fracture of steels. Eng Fract Mech 2001;68:773-88.  DOI
               103.      Birnbaum H, Robertson I, Sofronis P, Teter D. Mechanisms of hydrogen related fracture-a review. In: Second International
                    Conference on Corrosion-Deformation Interactions; 1996. pp. 172-95. Available from: https://www.researchgate.net/publication/
                    287494691_Mechanisms_of_hydrogen_related_fracture_-_a_review_in_T_Magnin_Ed [Last accessed on 15 Apr 2023].
               104.      Barnes A, Senior NA, Newman RC. Film-induced cleavage of Ag-Au alloys. Metall Mat Trans A 2009;40:58-68.  DOI
               105.      Eguchi K, Burnett TL, Engelberg DL. X-ray tomographic observation of environmental assisted cracking in heat-treated lean duplex
                    stainless steel. Corros Sci 2021;184:109363.  DOI
               106.      Zanotto F, Grassi V, Balbo A, Monticelli C, Zucchi F. Stress corrosion cracking of LDX 2101® duplex stainless steel in chloride
                    solutions in the presence of thiosulphate. Corros Sci 2014;80:205-12.  DOI
               107.      Wu W, Zhang X, Li W, et al. Effect of hydrogen trapping on hydrogen permeation in a 2205 duplex stainless steel: role of austenite-
                    ferrite interface. Corros Sci 2022;202:110332.  DOI
               108.      Zucchi F, Grassi V, Monticelli C, Trabanelli G. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic
                    artificial sea water in the presence of sulphide ions. Corros Sci 2006;48:522-30.  DOI
               109.      Klyk-spyra K, Sozańska M. Quantitative fractography of 2205 duplex stainless steel after a sulfide stress cracking test. Mater
                    Charact 2006;56:384-8.  DOI
               110.      Laitinen A, Hänninen H. Chloride-induced stress corrosion cracking of powder metallurgy duplex stainless steels. Corrosion
                    1996;52:295-306.  DOI
               111.      Wu W, Liu Z, Hu S, Li X, Du C. Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in
                    marine atmosphere environment. Ocean Eng 2017;146:311-23.  DOI
               112.      Raman RS, Siew W. Role of nitrite addition in chloride stress corrosion cracking of a super duplex stainless steel. Corros Sci
                    2010;52:113-7.  DOI
               113.      Rajaguru J, Arunachalam N. Investigation on machining induced surface and subsurface modifications on the stress corrosion crack
                    growth behaviour of super duplex stainless steel. Corros Sci 2018;141:230-42.  DOI
               114.      Wickström L, Mingard K, Hinds G, Turnbull A. Microcrack clustering in stress corrosion cracking of 22Cr and 25Cr duplex stainless
                    steels. Corros Sci 2016;109:86-93.  DOI
               115.      Örnek C, Zhong X, Engelberg DL. Low-temperature environmentally assisted cracking of grade 2205 duplex stainless steel beneath a
                    MgCl :FeCl  salt droplet. Corrosion 2016;72:384-99.  DOI
                        2
                            3
               116.      Sofia Hazarabedian M, Viereckl A, Quadir Z, et al. Hydrogen-induced stress cracking of swaged super duplex stainless steel subsea
                    components. Corrosion 2019;75:824-38.  DOI
               117.      Maeda MY, Koyama M, Nishimura H, Cintho OM, Akiyama E. Hydrogen-assisted damage evolution in nitrogen-doped duplex
                    stainless steel. Int J Hydrog Energy 2021;46:2716-28.  DOI
               118.      Liang X, Dodge M, Kabra S, Kelleher J, Lee T, Dong H. Effect of hydrogen charging on dislocation multiplication in pre-strained
                    super duplex stainless steel. Scr Mater 2018;143:20-4.  DOI
               119.      Örnek C, Larsson A, Harlow GS, et al. Metastable precursor structures in hydrogen-infused super duplex stainless steel
                    microstructure - an operando diffraction experiment. Corros Sci 2020;176:109021.  DOI
               120.      Claeys L, Depover T, De Graeve I, Verbeken K. First observation by EBSD of martensitic transformations due to hydrogen presence
                    during straining of duplex stainless steel. Mater Charact 2019;156:109843.  DOI
               121.      Barnoush A, Zamanzade M, Vehoff H. Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of
                    in situ electrochemical methods. Scr Mater 2010;62:242-5.  DOI
               122.      Örnek C, Larsson A, Harlow GS, et al. Time-resolved grazing-incidence X-ray diffraction measurement to understand the effect of
                    hydrogen on surface strain development in super duplex stainless steel. Scr Mater 2020;187:63-7.  DOI
               123.      Tong H, Sun Y, Su Y, Pang X, Gao K. Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for
                    marine structure (In Chinese). J Chin Soc Corros Prot 2019;39:130-7.  DOI
               124.      El-Sherik MA. Trends in oil and gas corrosion research and technologies; 2017. pp. 271-92.  DOI
               125.      Saithala JR, Sudhakar M, Ubhi HS, Atkinson JD. Environmental-assisted cracking behaviour of sigmatied super duplex stainless steel
                    in oil field production brine. 2012.  DOI
   87   88   89   90   91   92   93   94   95   96   97