Page 91 - Read Online
P. 91

Page 26 of 27          Liu et al. Microstructures 2023;3:2023020  https://dx.doi.org/10.20517/microstructures.2023.02

               69.       Kawamori M, Kinugasa J, Fukuta Y, et al. Pitting corrosion resistance of Ta-bearing duplex stainless steel. Mater Trans
                    2021;62:1359-67.  DOI
               70.       Meng Q, La P, Yao L, Zhang P, Wei Y, Guo X. Effect of Al on microstructure and properties of hot-rolled 2205 dual stainless steel.
                    Adv Mater Sci Eng 2016;2016:1-8.  DOI
               71.       Huang W, Chen C, Chou Y, Lin D, Yang S. Pitting corrosion behavior of silver-containing 2205 duplex stainless steel as secondary
                    austenitic phase existed. Mater Trans 2013;54:553-60.  DOI
               72.       Jeon S, Kim S, Lee J, Lee I, Park Y. Effects of sulfur addition on the formation of inclusions and the corrosion behavior of super
                    duplex stainless steels in chloride solutions of different pH. Mater Trans 2012;53:1617-26.  DOI
               73.       Kim SM, Kim JS, Kim KT, Park K, Lee CS. Effect of Ce addition on secondary phase transformation and mechanical properties of
                    27Cr-7Ni hyper duplex stainless steels. Mater Sci Eng A 2013;573:27-36.  DOI
               74.       Kim S, Jeon S, Lee I, Park Y. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel
                    - part 1. Corros Sci 2010;52:1897-904.  DOI
               75.       Shinji T, Yusuke O, Hiroshi U, Haruhiko K. Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material;
                    2014. (US 2014255244A1).
               76.       Potgieter JH, Ellis P, Bennekom AV. Investigation of the active dissolution behaviour of a 22% chromium duplex stainless steel with
                    small ruthenium additions in sulphuric acid. ISIJ Int 1995;35:197-202.  DOI
               77.       Örnek C, Engelberg D. SKPFM measured volta potential correlated with strain localisation in microstructure to understand corrosion
                    susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros Sci 2015;99:164-71.  DOI
               78.       Mondal R, Bonagani SK, Lodh A, et al. Relating general and phase specific corrosion in a super duplex stainless steel with phase
                    specific microstructure evolution. Corrosion 2019;75:1315-26.  DOI
               79.       Tsai W, Chen J. Galvanic corrosion between the constituent phases in duplex stainless steel. Corros Sci 2007;49:3659-68.  DOI
               80.       Jimei X. Metallography of stainless steel (In Chinese). Beijing: Metallurgical Industry Press; 1983. p. 122-3.
               81.       Cheng X, Wang Y, Dong C, Li X. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the
                    passive films formed in a 3.5% NaCl solution. Corros Sci 2018;134:122-30.  DOI
               82.       Luo H, Wang X, Dong C, Xiao K, Li X. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel
                    in simulated concrete pore solution. Corros Sci 2017;124:178-92.  DOI
               83.       Fréchard S, Martin F, Clément C, Cousty J. AFM and EBSD combined studies of plastic deformation in a duplex stainless steel.
                    Mater Sci Eng A 2006;418:312-9.  DOI
               84.       Frankel GS, Li T, Scully JR. Perspective-localized corrosion: passive film breakdown vs. pit growth stability. J Electrochem Soc
                    2017;164:C180-1.  DOI
               85.       Li T, Scully JR, Frankel GS. Localized corrosion: passive film breakdown vs. pit growth stability: part V. Validation of a new
                    framework for pit growth stability using one-dimensional artificial pit electrodes. J Electrochem Soc 2019;166:C3341-54.  DOI
               86.       Li M, Seyeux A, Wiame F, Marcus P, Światowska J. Insights on the Al-Cu-Fe-Mn intermetallic particles induced pitting corrosion of
                    Al-Cu-Li alloy. Corros Sci 2020;176:109040.  DOI
               87.       Jeon S, Kim H, Park Y. Effects of inclusions on the precipitation of chi phases and intergranular corrosion resistance of hyper duplex
                    stainless steel. Corros Sci 2014;87:1-5.  DOI
               88.       Zhang Z, Jing H, Xu L, Han Y, Zhao L. The influence of microstructural evolution on selective corrosion in duplex stainless steel
                    flux-cored arc welded joints. Corros Sci 2017;120:194-210.  DOI
               89.       Santos DCD, Magnabosco R, de Moura-neto C. Influence of sigma phase formation on pitting corrosion of an aged UNS S31803
                    duplex stainless steel. Corrosion 2013;69:900-11.  DOI
               90.       Jinlong L, Tongxiang L, Limin D, Chen W. Influence of sensitization on microstructure and passive property of AISI 2205 duplex
                    stainless steel. Corros Sci 2016;104:144-51.  DOI
               91.       Zhang Z, Zhao H, Zhang H, et al. Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel
                    based on electrochemical detection. Corros Sci 2015;93:120-5.  DOI
               92.       Hong J, Han D, Tan H, Li J, Jiang Y. Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion
                    by optimized double loop electrochemical potentiokinetic reactivation method. Corros Sci 2013;68:249-55.  DOI
               93.       Melo EB, Magnabosco R. Evaluation of microstructural effects on the degree of sensitization (DOS) of a UNS S31803 duplex
                    stainless steel aged at 475 °C. Corrosion 2015;71:1490-9.  DOI
               94.       Silva R, Vacchi G, Kugelmeier C, et al. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex
                    stainless steel at 475 °C: a comparative study between 2205 and 2101 steels. J Mater Sci Technol 2022;98:123-35.  DOI
               95.       Silva R, Kugelmeier C, Vacchi G, et al. A comprehensive study of the pitting corrosion mechanism of lean duplex stainless steel
                    grade 2404 aged at 475 °C. Corros Sci 2021;191:109738.  DOI
               96.       Chen Y, Yang B, Zhou Y, Wu Y, Zhu H. Evaluation of pitting corrosion in duplex stainless steel Fe Cr Ni for nuclear power
                                                                                           9
                                                                                        20
                    application. Acta Mater 2020;197:172-83.  DOI
               97.       Zhang B, Ma X. A review-Pitting corrosion initiation investigated by TEM. J Mater Sci Technol 2019;35:1455-65.  DOI
               98.       Pan S, Dong S, Xu M. Electrochemical origin for mitigated pitting initiation in AA7075 alloy with TiB2 nanoparticles. Appl Surf Sci
                    2022;601:154275.  DOI
               99.       Raja V, Shoji T. Stress corrosion cracking: theory and practice. Elsevier; 2011. Available from: https://www.researchgate.net/
                    publication/297926155_Stress_corrosion_cracking_Theory_and_practice [Last accessed on 15 Apr 2023].
   86   87   88   89   90   91   92   93   94   95   96