Page 90 - Read Online
P. 90

Liu et al. Microstructures 2023;3:2023020  https://dx.doi.org/10.20517/microstructures.2023.02  Page 25 of 27

               39.       Yao J, Li N, Grothe H, Qi Z, Dong C. Determination of the hydrogen effects on the passive film and the micro-structure at the surface
                    of 2205 duplex stainless steel. Appl Surf Sci 2021;554:149597.  DOI
               40.       Guo LQ, Qin SX, Yang BJ, Liang D, Qiao LJ. Effect of hydrogen on semiconductive properties of passive film on ferrite and
                    austenite phases in a duplex stainless steel. Sci Rep 2017;7:3317.  DOI  PubMed  PMC
               41.       Chen L, Liu W, Dong B, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel:
                    effect of tensile elastic stress. Corros Sci 2021;193:109903.  DOI
               42.       Lv J, Guo W, Liang T. The effect of pre-deformation on corrosion resistance of the passive film formed on 2205 duplex stainless
                    steel. J Alloys Compd 2016;686:176-83.  DOI
               43.       Örnek C, Långberg M, Evertsson J, et al. In-situ synchrotron GIXRD study of passive film evolution on duplex stainless steel in
                    corrosive environment. Corros Sci 2018;141:18-21.  DOI
               44.       Långberg M, Örnek C, Evertsson J, et al. Redefining passivity breakdown of super duplex stainless steel by electrochemical operando
                    synchrotron near surface X-ray analyses. NPJ Mater Degrad 2019;3:1-11.  DOI
               45.       Ha HY, Lee CH, Lee TH, Kim S. Effects of nitrogen and tensile direction on stress corrosion cracking susceptibility of Ni-free
                    FeCrMnC-based duplex stainless steels. Materials 2017;10:294.  DOI  PubMed  PMC
               46.       Yan Z. Effects of Ni, Mn and N on microstructure and properties of 2507 super duplex stainless steel (In Chinese). In Harbin
                    University of Science and Technology; 2014.
               47.       Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels. Corros Sci 2002;44:2393-407.
                    DOI
               48.       Merello R, Botana F, Botella J, Matres M, Marcos M. Influence of chemical composition on the pitting corrosion resistance of non-
                    standard low-Ni high-Mn-N duplex stainless steels. Corros Sci 2003;45:909-21.  DOI
               49.       An L, Cao J, Wu L, Mao H, Yang Y. Effects of Mo and Mn on pitting behavior of duplex stainless steel. J Iron Steel Res Int
                    2016;23:1333-41.  DOI
               50.       Sun Y, Tan X, Lei L, Li J, Jiang Y. Revisiting the effect of molybdenum on pitting resistance of stainless steels. Tungsten
                    2021;3:329-37.  DOI
               51.       Tian H, Cheng X, Wang Y, Dong C, Li X. Effect of Mo on interaction between α/γ phases of duplex stainless steel. Electrochimica
                    Acta 2018;267:255-68.  DOI
               52.       Kim JS, Xiang PJ, Kim KY. Effect of tungsten and nickel addition on the repassivation behavior of stainless steel. Corros Sci
                    2005;61:174-83.  DOI
               53.       Potgieter J, Olubambi P, Cornish L, Machio C, Sherif EM. Influence of nickel additions on the corrosion behaviour of low nitrogen
                    22% Cr series duplex stainless steels. Corros Sci 2008;50:2572-9.  DOI
               54.       Muthupandi V, Bala Srinivasan P, Shankar V, Seshadri S, Sundaresan S. Effect of nickel and nitrogen addition on the microstructure
                    and mechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals. Mater Lett 2005;59:2305-9.
                    DOI
               55.       Torres C, Hazarabedian MS, Quadir Z, Johnsen R, Iannuzzi M. The Role of tungsten on the phase transformation kinetics and its
                    correlation with the localized corrosion resistance of 25Cr super duplex stainless steels. J Electrochem Soc 2020;167:081510.  DOI
               56.       Ji L. Effect of tungsten on microstructure and properties of super duplex stainless steel 00Cr Ni Mo WCuN (In Chinese). In:
                                                                                   25  7  3.5
                    Kunming University of Science and Technology; 2011.
               57.       Ran Q, Li J, Xu Y, Xiao X, Yu H, Jiang L. Novel Cu-bearing economical 21Cr duplex stainless steels. Mater Des 2013;46:758-65.
                    DOI
               58.       Zhao Y, Liu X, Li X, Wang Y, Zhang W, Liu Z. Pitting corrosion behavior in novel Mn-N alloyed lean duplex stainless steel
                    containing Cu. J Mater Sci 2018;53:824-36.  DOI
               59.       Li P, Zhao Y, Liu Y, et al. Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the
                    pseudomonas aeruginosa biofilm. J Mater Sci Technol 2017;33:723-7.  DOI
               60.       Fuertes N, Pettersson R. Review-passive film properties and electrochemical response of different phases in a Cu-alloyed stainless
                    steel after long term heat treatment. J Electrochem Soc 2016;163:C377-85.  DOI
               61.       Fredriksson W, Edström K, Olsson C. XPS analysis of manganese in stainless steel passive films on 1.4432 and the lean duplex
                    1.4162. Corros Sci 2010;52:2505-10.  DOI
               62.       Jang Y, Kim S, Lee J. Effect of different mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels.
                    Metall Mat Trans A 2005;36:1229-36.  DOI
               63.       Li J, Xu Y, Xiao X, Zhao J, Jiang L, Hu J. A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr-
                    2Ni-3Mo-xMn-N. Mater Sci Eng A 2009;527:245-51.  DOI
               64.       Feng Z, Yang Y, Wang J. Effect of Mn addition on the precipitation and corrosion behaviour of 22% Cr economical duplex stainless
                    steel after isothermal aging at 800 °C. J Alloys Compd 2017;699:334-44.  DOI
               65.       Zhang J, Hu X, Chou K. Effects of Ti addition on microstructure and the associated corrosion behavior of a 22Cr-5Ni duplex stainless
                    steel. Mater Corros 2021;72:1201-14.  DOI
               66.       Li H. Dressing inclusions with "Niobium Armor": a new approach to improve the corrosion resistance of duplex stainless steels using
                    niobium microalloying (In Chinese). In The 11th National Conference on Corrosion and Protection; 2021.  DOI
               67.       Eleonora B, Raghuveer G, Karin A, Guocai C, Christina H, Siriki R. New duplex stainless steel 2018. (EP 3631031A1).
               68.       Junichiro K, Natsuki N, Nii H, Sato T. Duplex stainless steel material and duplex stainless steel tube; 2015. (EP 2947169A1).
   85   86   87   88   89   90   91   92   93   94   95