Page 89 - Read Online
P. 89

Page 24 of 27          Liu et al. Microstructures 2023;3:2023020  https://dx.doi.org/10.20517/microstructures.2023.02

               9.       Jebaraj A, Ajaykumar L, Deepak CR, Aditya KV. Weldability, machinability and surfacing of commercial duplex stainless steel
                    AISI2205 for marine applications - a recent review. J Adv Res 2017;8:183-99.  DOI  PubMed  PMC
               10.       Gowthaman P, Jeyakumar S, Saravanan B. Machinability and tool wear mechanism of duplex stainless steel - a review. Mater Today
                    Proc 2020;26:1423-9.  DOI
               11.       Westin EM. Hot cracking in duplex stainless steel weldments - a review. Weld World 2022;66:1483-99.  DOI
               12.       Zhang D, Liu A, Yin B, Wen P. Additive manufacturing of duplex stainless steels - a critical review. J Manuf Process 2022;73:496-
                    517.  DOI
               13.       Verma J, Taiwade RV. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion
                    resistance of duplex stainless steel weldments-a review. J Manuf Process 2017;25:134-52.  DOI
               14.       Fan Y, Liu T, Xin L, Han Y, Lu Y, Shoji T. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: a review.
                    J Nucl Mater 2021;544:152693.  DOI
               15.       Farias Azevedo CR, Boschetti Pereira H, Wolynec S, Padilha AF. An overview of the recurrent failures of duplex stainless steels.
                    Eng Fail Anal 2019;97:161-88.  DOI
               16.       Saithala JR, Kharusi A, Ghafri M, Nabhani T, Kulkarni M, Behlani N. After 30 years of duplex stainless steel experience in oil &
                    gas-do we still face challenges? In: AMPP Annual Conference + Expo, San Antonio, TX, USA; 2022. Available from: https://
                    onepetro.org/amppcorr/proceedings-abstract/AMPP22/4-AMPP22/D041S042R006/488731 [Last accessed on 11 April 2023].
               17.       Cassagne T, Embrittlement F. A review on hydrogen embrittlement of duplex stainless steels. Available from: https://onepetro.org/
                    NACECORR/proceedings-abstract/CORR05/All-CORR05/NACE-05098/115159 [Last accessed on 11 April 2023].
               18.       Elhoud A, Renton N, Deans W. Hydrogen embrittlement of super duplex stainless steel in acid solution. Int J Hydrog Energy
                    2010;35:6455-64.  DOI
               19.       Pan J. Studying the passivity and breakdown of duplex stainless steels at micrometer and nanometer scales - the influence of
                    microstructure. Front Mater 2020;7:133.  DOI
               20.       Han Y, Liu Z, Wu C, et al. A short review on the role of alloying elements in duplex stainless steels. Tungsten 2022:00168.  DOI
               21.       Ha H, Lee T, Lee C, Yoon H. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex
                    stainless steel. Corros Sci 2019;149:226-35.  DOI
               22.       Ha H, Jang M, Lee T, Moon J. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial
                    2205 duplex stainless steel. Corros Sci 2014;89:154-62.  DOI
               23.       Ha H, Jang M, Lee T, Moon J. Understanding the relation between phase fraction and pitting corrosion resistance of UNS S32750
                    stainless steel. Mater Charact 2015;106:338-45.  DOI
               24.       Yao J, Macdonald DD, Dong C. Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods.
                    Corros Sci 2019;146:221-32.  DOI
               25.       Yao J, Qi Z, Dong C. Real-time evolution and characterization of passive films on individual ferrite and austenite phases of duplex
                    stainless steel. Electrochem Commun 2022;137:107265.  DOI
               26.       Ma L, Wiame F, Maurice V, Marcus P. Origin of nanoscale heterogeneity in the surface oxide film protecting stainless steel against
                    corrosion. NPJ Mater Degrad 2019;3:1-9.  DOI
               27.       Ma L, Wiame F, Maurice V, Marcus P. Stainless steel surface structure and initial oxidation at nanometric and atomic scales. Appl
                    Surf Sci 2019;494:8-12.  DOI
               28.       Örnek C, Långberg M, Evertsson J, et al. Influence of surface strain on passive film formation of duplex stainless steel and its
                    degradation in corrosive environment. J Electrochem Soc 2019;166:C3071-80.  DOI
               29.       Långberg M, Örnek C, Zhang F, et al. Characterization of native oxide and passive film on austenite/ferrite phases of duplex stainless
                    steel using synchrotron HAXPEEM. J Electrochem Soc 2019;166:C3336-40.  DOI
               30.       Rahimi E, Kosari A, Hosseinpour S, Davoodi A, Zandbergen H, Mol JM. Characterization of the passive layer on ferrite and austenite
                    phases of super duplex stainless steel. Appl Surf Sci 2019;496:143634.  DOI
               31.       Vignal V, Krawiec H, Heintz O, Mainy D. Passive properties of lean duplex stainless steels after long-term ageing in air studied using
                    EBSD, AES, XPS and local electrochemical impedance spectroscopy. Corros Sci 2013;67:109-17.  DOI
               32.       Gardin E, Zanna S, Seyeux A, Allion-maurer A, Marcus P. Comparative study of the surface oxide films on lean duplex and
                    corresponding single phase stainless steels by XPS and ToF-SIMS. Corros Sci 2018;143:403-13.  DOI
               33.       Gardin E, Zanna S, Seyeux A, Allion-maurer A, Marcus P. XPS and ToF-SIMS characterization of the surface oxides on lean duplex
                    stainless steel - Global and local approaches. Corros Sci 2019;155:121-33.  DOI
               34.       Liu H, Sun J, Qian J, et al. Revealing the temperature effects on the corrosion behaviour of 2205 duplex stainless steel from
                    passivation to activation in a CO -containing geothermal environment. Corros Sci 2021;187:109495.  DOI
                                         2
               35.       Cui Z, Chen S, Dou Y, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater:
                    influence of dissolved oxygen and pH. Corros Sci 2019;150:218-34.  DOI
               36.       Cui Z, Wang L, Ni H, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless
                    steel in simulated desulfurized flue gas condensates. Corros Sci 2017;118:31-48.  DOI
               37.       Kan B, Wu W, Yang Z, Zhang X, Li J. Effects of hydrostatic pressure and pH on the corrosion behavior of 2205 duplex stainless
                    steel. J Electroanal Chem 2021;886:115134.  DOI
               38.       Wang L, Dou Y, Han S, Wu J, Cui Z. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex
                    stainless steel in acidified artificial seawater. Appl Surf Sci 2020;504:144340.  DOI
   84   85   86   87   88   89   90   91   92   93   94