Page 94 - Read Online
P. 94

Yang et al. Microstructures 2023;3:2023013  https://dx.doi.org/10.20517/microstructures.2022.30  Page 27 of 27

               113.      Seo M, Park M, Lee KT, Kim K, Kim J, Cho J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable
                    batteries. Energy Environ Sci 2011;4:425-8.  DOI
               114.      Li D, Feng C, Liu HK, Guo Z. Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. J
                    Mater Chem A 2015;3:978-81.  DOI
               115.      Kim D, Park C. Co-Ge compounds and their electrochemical performance as high-performance Li-ion battery anodes. Mater Today
                    Energy 2020;18:100530.  DOI
               116.      Zhao Z, Ma W, Wang Y, Lv Y, Ma C, Liu X. Boosting the electrochemical performance of nanoporous CuGe anode by regulating the
                    porous structure and solid electrolyte interface layer through Ni-doping. Appl Surf Sci 2021;558:149868.  DOI
               117.      Bensalah N, Matalkeh M, Mustafa NK, Merabet H. Binary Si-Ge Alloys as high-capacity anodes for Li-ion batteries. Phys Status
                    Solidi A 2020;217:1900414.  DOI
               118.      Doherty J, McNulty D, Biswas S, et al. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries.
                    Nanotechnology 2020;31:165402.  DOI  PubMed
               119.      Rodriguez JR, Qi Z, Wang H, et al. Ge Sb Se  glass as high-capacity promising lithium-ion battery anode. Nano Energy
                                                2  2  5
                    2020;68:104326.  DOI
               120.      Kim WS, Vo TN, Kim IT. GeTe-TiC-C composite anodes for Li-ion storage. Materials 2020;13:4222.  DOI  PubMed  PMC
               121.      Zhou X, Li T, Cui Y, et al. In situ and operando morphology study of germanium-selenium alloy anode for lithium-ion batteries. ACS
                    Appl Energy Mater 2020;3:6115-20.  DOI
               122.      Lee G, Jun Choi Y, Hwan Kim Y, et al. Amorphization of germanium selenide driven by chemical interaction with carbon and
                    realization of reversible conversion-alloying reaction for superior K-ion storage. Chem Eng J 2022;430:132995.  DOI
               123.      Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem
                    Commun 2016;52:9279-82.  DOI  PubMed
               124.      Wang Q, Zhao X, Ni C, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem
                    C 2017;121:12652-7.  DOI
               125.      Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution
                    and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc 2017;164:A2360-7.  DOI
               126.      Qin G, Liu Y, Han P, Wang L, Liu F, Ma J. Self-regulating organic polymer coupled with enlarged inorganic SnS  interlamellar
                                                                                                2
                    composite for potassium ion batteries. Adv Funct Mater 2020;30:2005080.  DOI
               127.      Hu R, Fang Y, Liu X, et al. Synthesis of SnS  ultrathin nanosheets as anode materials for potassium ion batteries. Chem Res Chin
                                                  2
                    Univ 2021;37:311-7.  DOI
               128.      Verma R, Didwal PN, Nguyen A, Park C. SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-
                    ion batteries with outstanding capacity and cyclability. Chem Eng J 2021;421:129988.  DOI
               129.      Lakshmi V, Chen Y, Mikhaylov AA, et al. Nanocrystalline SnS  coated onto reduced graphene oxide: demonstrating the feasibility of
                                                             2
                    a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun 2017;53:8272-5.  DOI  PubMed
               130.      Cao L, Luo B, Xu B, et al. Stabilizing intermediate phases via efficient entrapment effects of layered VS /SnS@C heterostructure for
                                                                                       4
                    ultralong lifespan potassium-ion batteries. Adv Funct Mater 2021;31:2103802.  DOI
               131.      Sun H, Zhang Y, Xu X, et al. Strongly coupled Te-SnS /MXene superstructure with self-autoadjustable function for fast and stable
                                                        2
                    potassium ion storage. J Energy Chem 2021;61:416-24.  DOI
               132.      Cao Y, Chen H, Shen Y, et al. SnS  Nanosheets anchored on nitrogen and sulfur Co-doped MXene sheets for high-performance
                                            2
                    potassium-ion batteries. ACS Appl Mater Interfaces 2021;13:17668-76.  DOI  PubMed
               133.      Zhou S, Lan J, Song K, Zhang Z, Shi J, Chen W. SnS/SnS /rGO heterostructure with fast kinetics enables compact sodium ion
                                                            2
                    storage. FlatChem 2021;28:100259.  DOI
               134.      Sun Q, Li D, Dai L, Liang Z, Ci L. Structural engineering of SnS  encapsulated in carbon nanoboxes for high-performance
                                                                  2
                    sodium/potassium-ion batteries anodes. Small 2020;16:e2005023.  DOI  PubMed
               135.      Wen S, Gu X, Ding X, et al. Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt
                    chemistry and interfacial engineering. Nano Res 2022;15:2083-91.  DOI
               136.      Sheng C, Yu F, Li C, et al. Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time. J Phys Chem
                    Lett 2021;12:2064-71.  DOI  PubMed
   89   90   91   92   93   94   95   96   97   98   99