Page 92 - Read Online
P. 92

Yang et al. Microstructures 2023;3:2023013  https://dx.doi.org/10.20517/microstructures.2022.30  Page 25 of 27

               53.       Yang F, Hao J, Long J, et al. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated
                    electrolyte chemistry. Adv Energy Mater 2021;11:2003346.  DOI
               54.       Liu Q, Hu Z, Liang Y, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and
                    potassium storage. Angew Chem 2020;132:5197-202.  DOI  PubMed
               55.       Li D, Zhang Y, Sun Q, et al. Hierarchically porous carbon supported Sn P  as a superior anode material for potassium-ion batteries.
                                                                   4 3
                    Energy Stor Mater 2019;23:367-74.  DOI
               56.       Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn P  anodes for potassium-ion batteries. Joule
                                                                           4 3
                    2018;2:1534-47.  DOI
               57.       Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater
                    2018;8:1703496.  DOI
               58.       Lei K, Wang C, Liu L, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries.
                    Angew Chem 2018;130:4777-81.  DOI  PubMed
               59.       Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt
                    chemistry. Adv Energy Mater 2018;8:1703288.  DOI
               60.       Xie F, Zhang L, Chen B, et al. Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-
                    ion batteries. Matter 2019;1:1681-93.  DOI
               61.       Shen C, Song G, Zhu X, et al. An in-depth study of heteroatom boosted anode for potassium-ion batteries. Nano Energy
                    2020;78:105294.  DOI
               62.       Chen K, Chong S, Yuan L, Yang Y, Tuan H. Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi Se   3
                                                                                                       2
                    wrapped with graphene for superior potassium-ion storage. Energy Stor Mater 2021;39:239-49.  DOI
               63.       Cheng X, Li D, Wu Y, Xu R, Yu Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high
                    performance anodes for sodium- and potassium-ion batteries. J Mater Chem A 2019;7:4913-21.  DOI
               64.       Hu X, Liu Y, Chen J, Yi L, Zhan H, Wen Z. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-
                    performance hybrid potassium-ion battery capacitors. Adv Energy Mater 2019;9:1901533.  DOI
               65.       Shi X, Zhang J, Yao Q, et al. A self-template approach to synthesize multicore-shell Bi@N-doped carbon nanosheets with interior
                    void space for high-rate and ultrastable potassium storage. J Mater Chem A 2020;8:8002-9.  DOI
               66.       Li H, Zhao C, Yin Y, et al. N-doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance
                    potassium-ion batteries. Nanoscale 2020;12:4309-13.  DOI  PubMed
               67.       Hussain N, Liang T, Zhang Q, et al. Ultrathin Bi nanosheets with superior photoluminescence. Small 2017;13:1701349.  DOI
                    PubMed
               68.       Zhou, J, Chen, J, Chen, M, et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv
                    Mater 2019;31:e1807874.  DOI
               69.       Hagiwara R, Tamaki K, Kubota K, Goto T, Nohira T. Thermal properties of mixed alkali bis(trifluoromethylsulfonyl)amides. J Chem
                    Eng Data 2008;53:355-8.  DOI
               70.       Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.  DOI  PubMed
               71.       Shen C, Cheng T, Liu C, et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J Mater Chem
                    A 2020;8:453-60.  DOI
               72.       Hosaka T, Kubota K, Kojima H, Komaba S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem
                    Commun 2018;54:8387-90.  DOI  PubMed
               73.       Zhang R, Bao J, Wang Y, Sun CF. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci 2018;9:6193-8.  DOI
                    PubMed  PMC
               74.       Jiao T, Wu S, Cheng J, et al. Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-
                    ion battery anodes. J Mater Chem A 2020;8:8440-6.  DOI
               75.       Xiang X, Liu D, Zhu X, et al. Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced
                    electrochemical potassium storage. Appl Surf Sci 2020;514:145947.  DOI
               76.       Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle
                    life sodium- and potassium-ion anodes. Adv Funct Mater 2019;29:1809195.  DOI
               77.       Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li
                                                                                                         3
                    Sb. J Electrochem Soc 1977;124:1569-77.  DOI
               78.       McCulloch WD, Ren X, Yu M, Huang Z, Wu Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl
                    Mater Interfaces 2015;7:26158-66.  DOI  PubMed
               79.       Liu Y, Xu J, Kang Z, Wang J. Thermodynamic descriptions and phase diagrams for Sb-Na and Sb-K binary systems. Thermochim
                    Acta 2013;569:119-26.  DOI
               80.       Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci
                    2019;12:615-23.  DOI
               81.       Han C, Han K, Wang X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion
                    batteries. Nanoscale 2018;10:6820-6.  DOI  PubMed
               82.       Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage
                    performance and mechanism. Nanoscale 2018;10:13236-41.  DOI  PubMed
   87   88   89   90   91   92   93   94   95   96   97