Page 91 - Read Online
P. 91

Page 24 of 27        Yang et al. Microstructures 2023;3:2023013  https://dx.doi.org/10.20517/microstructures.2022.30

               22.       Li L, Hu Z, Lu Y, et al. A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion batteries. Angew
                    Chem Int Ed 2021;60:13050-6.  DOI  PubMed
               23.       Qin M, Ren W, Meng J, et al. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet
                    assembly. ACS Sustain Chem Eng 2019;7:11564-70.  DOI
               24.       Liu S, Kang L, Jun SC. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater
                    2021;33:e2004689.  DOI  PubMed
               25.       Yang Y, Zhou J, Wang L, et al. Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries.
                    Nano Energy 2022;99:107424.  DOI
               26.       Min X, Xiao J, Fang M, et al. Potassium-ion batteries: outlook on present and future technologies. Energy Environ Sci 2021;14:2186-
                    243.  DOI
               27.       Zhang K, Gu Z, Ang EH, et al. Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and
                    application prospects. Mater Today 2022;54:189-201.  DOI
               28.       Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.  DOI  PubMed
               29.       Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials. Nano Lett 2015;15:7671-7.  DOI  PubMed
               30.       Zhan F, Wang H, He Q, et al. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors.
                    Chem Sci 2022;13:11981-2015.  DOI  PubMed  PMC
               31.       Liu S, Kang L, Zhang J, Jung E, Lee S, Jun SC. Structural engineering and surface modification of MOF-derived cobalt-based hybrid
                    nanosheets for flexible solid-state supercapacitors. Energy Stor Mater 2020;32:167-77.  DOI
               32.       Tu J, Tong H, Zeng X, et al. Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for
                    potassium-ion batteries. Adv Funct Mater 2022;32:2204991.  DOI
               33.       Tian S, Zhang Y, Yang C, Tie S, Nan J. Nitrogen-doped carbon nanosheet coated multilayer graphite as stabilized anode material of
                    potassium-ion batteries with high performances. Electrochim Acta 2021;380:138254.  DOI
               34.       Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying
                    reaction mechanism. Adv Funct Mater 2018;28:1703857.  DOI
               35.       Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion
                    batteries and potassium-ion capacitors. Electrochem Commun 2015;60:172-5.  DOI
               36.       Cao K, Liu H, Li W, et al. CuO nanoplates for high-performance potassium-ion batteries. Small 2019;15:e1901775.  DOI  PubMed
               37.       Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black
                    phosphorus. J Mater Chem A 2017;5:23506-12.  DOI
               38.       Jin H, Wang H, Qi Z, et al. A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew Chem Int Ed
                    2020;59:2318-22.  DOI  PubMed
               39.       Xiong P, Bai P, Tu S, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-
                    ion battery anodes. Small 2018;14:e1802140.  DOI  PubMed
               40.       Wu Y, Hu S, Xu R, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-
                    doped porous hollow carbon nanofibers. Nano Lett 2019;19:1351-8.  DOI  PubMed
               41.       Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for
                    sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.  DOI
               42.       Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc
                    2017;139:3316-9.  DOI
               43.       Zhang W, Wu Z, Zhang J, et al. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for
                    potassium ion batteries. Nano Energy 2018;53:967-74.  DOI
               44.       Li B, He Z, Zhao J, Liu W, Feng Y, Song J. Advanced Se P @C anode with exceptional cycling life for high performance potassium-
                                                         3 4
                    ion batteries. Small 2020;16:e1906595.  DOI
               45.       Yang Q, Tai Z, Xia Q, et al. Copper phosphide as a promising anode material for potassium-ion batteries. J Mater Chem A
                    2021;9:8378-85.  DOI
               46.       Xu GL, Chen Z, Zhong GM, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high
                    performance anode material for sodium-ion batteries. Nano Lett 2016;16:3955-65.  DOI  PubMed
               47.       Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries.
                    Electron Mater Lett 2020;16:89-98.  DOI
               48.       Yuan D, Cheng J, Qu G, et al. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for
                    lithium-ion batteries. J Power Sources 2016;301:131-7.  DOI
               49.       Ramireddy T, Xing T, Rahman MM, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J
                    Mater Chem A 2015;3:5572-84.  DOI
               50.       Verma R, Didwal PN, Ki HS, Cao G, Park CJ. SnP /Carbon nanocomposite as an anode material for potassium-ion batteries. ACS
                                                      3
                    Appl Mater Interfaces 2019;11:26976-84.  DOI  PubMed
               51.       Zhang Z, Wu C, Chen Z, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP
                    hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A 2020;8:3369-78.  DOI
               52.       Yang F, Gao H, Hao J, et al. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-
                    /potassium-ion batteries. Adv Funct Mater 2019;29:1808291.  DOI
   86   87   88   89   90   91   92   93   94   95   96