Page 93 - Read Online
P. 93

Page 26 of 27        Yang et al. Microstructures 2023;3:2023013  https://dx.doi.org/10.20517/microstructures.2022.30

               83.       Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage
                    properties and discharge mechanisms. ACS Appl Mater Interfaces 2019;11:27973-81.  DOI  PubMed
               84.       Liu Y, Tai Z, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-
                    step shear exfoliation. Nat Commun 2018;9:3645.  DOI  PubMed  PMC
               85.       Yi Z, Qian Y, Tian J, Shen K, Lin N, Qian Y. Self-templating growth of Sb Se @C microtube: a convention-alloying-type anode
                                                                      2  3
                    material for enhanced K-ion batteries. J Mater Chem A 2019;7:12283-91.  DOI
               86.       Huang H, Wang J, Yang X, et al. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in
                    situ TEM. Angew Chem Int Ed 2020;59:14504-10.  DOI  PubMed
               87.       Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun
                    2018;54:11773-6.  DOI  PubMed
               88.       An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance
                    potassium-ion batteries. ACS Nano 2018;12:12932-40.  DOI  PubMed
               89.       Wang Z, Dong K, Wang D, et al. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based
                    electrolytes toward high-performance potassium-ion batteries. J Mater Chem A 2019;7:14309-18.  DOI
               90.       Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating
                    ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;58:14578-83.  DOI  PubMed
               91.       Cheng Y, Yao Z, Zhang Q, et al. In situ atomic-scale observation of reversible potassium storage in Sb S @Carbon nanowire anodes.
                                                                                      2 3
                    Adv Funct Mater 2020;30:2005417.  DOI
               92.       Liu H, He Y, Cao K, et al. Stimulating the reversibility of Sb S  Anode for high-performance potassium-ion batteries. Small
                                                               2 3
                    2021;17:e2008133.  DOI
               93.       Sheng B, Wang L, Huang H, et al. Boosting potassium storage by integration advantageous of defect engineering and spatial
                    confinement: a case study of Sb S . Small 2020;16:e2005272.  DOI
                                        2 3
               94.       Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. A Sb S  nanoflower/MXene composite as an anode for potassium-ion batteries. ACS
                                                      2 3
                    Appl Mater Interfaces 2020;12:57907-15.  DOI
               95.       Chen B, Yang L, Bai X, et al. Heterostructure Engineering of Core-Shelled Sb@ Sb S  encapsulated in 3D N-doped carbon hollow-
                                                                           2 3
                    spheres for superior sodium/potassium storage. Small 2021;17:e2006824.  DOI
               96.       He X, Liao J, Wang S, et al. From nanomelting to nanobeads: nanostructured Sb Bi  alloys anchored in three-dimensional carbon
                                                                           1-x
                                                                         x
                    frameworks as a high-performance anode for potassium-ion batteries. J Mater Chem A 2019;7:27041-7.  DOI
               97.       Wu J, Zhang Q, Liu S, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-
                    ion batteries. Nano Energy 2020;77:105118.  DOI
               98.       Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion
                    battery alloying anodes. Small Methods 2020;4:2000218.  DOI
               99.       Tian H, Xin F, Wang X, He W, Han W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J
                    Materiomics 2015;1:153-69.  DOI
               100.      Yin L, Song J, Yang J, et al. Construction of Ge/C nanospheres composite as highly efficient anode for lithium-ion batteries. J Mater
                    Sci Mater Electron 2021;32:6398-407.  DOI
               101.      Hu Z, Zhang S, Zhang C, Cui G. High performance germanium-based anode materials. Coord Chem Rev 2016;326:34-85.  DOI
               102.      Jung H, Allan PK, Hu Y, et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-
                    ion batteries. Chem Mater 2015;27:1031-41.  DOI
               103.      Loaiza LC, Monconduit L, Seznec V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from
                    Structure to Electrochemical Mechanism. Small 2020;16:e1905260.  DOI  PubMed
               104.      Wen N, Chen S, Feng J, et al. In situ hydrothermal synthesis of double-carbon enhanced novel cobalt germanium hydroxide
                    composites as promising anode material for sodium ion batteries. Dalton Trans 2021;50:4288-99.  DOI  PubMed
               105.      Zeng T, He H, Guan H, Yuan R, Liu X, Zhang C. Tunable hollow nanoreactors for in situ synthesis of GeP electrodes towards high-
                    performance sodium ion batteries. Angew Chem Int Ed 2021;60:12103-8.  DOI  PubMed
               106.      Liu R, Luo F, Zeng L, et al. Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion
                    batteries. J Colloid Interface Sci 2021;584:372-81.  DOI  PubMed
               107.      Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem
                    Commun 2019;101:68-72.  DOI
               108.      He C, Zhang JH, Zhang WX, Li TT. GeSe/BP van der waals heterostructures as promising anode materials for potassium-ion
                    batteries. J Phys Chem C 2019;123:5157-63.  DOI
               109.      Zhou Y, Zhao M, Chen ZW, Shi XM, Jiang Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion
                    batteries. Phys Chem Chem Phys 2018;20:30290-6.  DOI  PubMed
               110.      Hao J, Wang Y, Guo Q, Zhao J, Li Y. Structural strategies for germanium-based anode materials to enhance lithium storage. Part
                    Part Syst Charact 2019;36:1900248.  DOI
               111.      Balogun M, Yang H, Luo Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-
                    double-shell electrodes. Energy Environ Sci 2018;11:1859-69.  DOI
               112.      Mo R, Rooney D, Sun K, Yang HY. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-
                    shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun 2017;8:13949.  DOI  PubMed  PMC
   88   89   90   91   92   93   94   95   96   97   98