Page 85 - Read Online
P. 85

Li et al. Microstructures 2023;3:2023007  https://dx.doi.org/10.20517/microstructures.2022.27  Page 9 of 10

               Laboratory (Grant No. XHT2020-011), Sanya Science and Education Innovation Park of Wuhan University
               of  Technology  (2020KF0017)  and  Guangdong  Basic  and  Applied  Basic  Research  Foundation
               (2022A1515010073).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater
                   2017;29:1601727.  DOI  PubMed
               2.       Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.  DOI
               3.       Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress
                   and outlook. Adv Funct Mater 2018;28:1803665.  DOI
               4.       Li D, Zeng X, Li Z, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10:675-703.  DOI
               5.       Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science
                   2019;365:578-82.  DOI  PubMed
               6.       Qi H, Xie A, Tian A, Zuo R. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using
                   nanodomain engineered BiFeO -BaTiO -NaNbO  lead-free bulk ferroelectrics. Adv Energy Mater 2020;10:1903338.  DOI
                                       3     3     3
               7.       Kittel C. Theory of antiferroelectric crystals. Phys Rev 1951;82:729-32.  DOI
               8.       Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog
                   Mater Sci 2014;63:1-57.  DOI
               9.       Randall CA, Fan Z, Reaney I, Chen L, Trolier-mckinstry S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal
                   structures, size effects, and applications. J Am Ceram Soc 2021;104:3775-810.  DOI
               10.      Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv
                   Mater 2017;29:1701824.  DOI  PubMed
               11.      Tagantsev AK, Vaideeswaran K, Vakhrushev SB, et al. The origin of antiferroelectricity in PbZrO . Nat Commun 2013;4:2229.  DOI
                                                                                   3
                   PubMed
               12.      Aramberri H, Cazorla C, Stengel M, Íñiguez J. On the possibility that PbZrO  not be antiferroelectric. NPJ Comput Mater 2021;7:196.
                                                                    3
                   DOI
               13.      Hao X, Zhai J, Yao X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO  antiferroelectric thin films. J
                                                                                      3
                   Am Ceram Soc 2009;92:1133-5.  DOI
               14.      Luo N, Han K, Zhuo F, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J
                   Mater Chem C 2019;7:4999-5008.  DOI
               15.      Cai H, Yan S, Zhou M, et al. Significantly improved energy storage properties and cycling stability in La-doped  PbZrO   3
                   antiferroelectric thin films by chemical pressure tailoring. J Eur Ceram Soc 2019;39:4761-9.  DOI
               16.      Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Lead-free antiferroelectric: xCaZrO -(1-x)NaNbO  system
                                                                                           3        3
                   (0<x<0.10). Dalton Trans 2015;44:10763-72.  DOI  PubMed
               17.      Guo H, Shimizu H, Mizuno Y, Randall CA. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable
                   ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO -xSrZrO  solid solution. J Appl Phys
                                                                                      3
                                                                                3
                   2015;117:214103.  DOI
               18.      Gao L, Guo H, Zhang S, Randall CA. A perovskite lead-free antiferroelectric xCaHfO -(1-x) NaNbO  with induced double hysteresis
                                                                                     3
                                                                           3
                   loops at room temperature. J Appl Phys 2016;120:204102.  DOI
               19.      Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A
                   1976;32:751-67.  DOI
               20.      Chiu F. A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014;2014:1-18.  DOI
               21.      Huang Y, Shu L, Zhang S, et al. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO -based lead-free
                                                                                               3
   80   81   82   83   84   85   86   87   88   89   90