Page 58 - Read Online
P. 58

Yang et al. Microstructures 2023;3:2023005  https://dx.doi.org/10.20517/microstructures.2022.24  Page 9 of 10

                   ultrahigh responsivity. Adv Mater 2012;24:5878-83.  DOI  PubMed
               26.      Nakanishi H, Bishop KJ, Kowalczyk B, et al. Photoconductance and inverse photoconductance in films of functionalized metal
                   nanoparticles. Nature 2009;460:371-5.  DOI  PubMed
               27.      Hayden O, Agarwal R, Lieber CM. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat
                   Mater 2006;5:352-6.  DOI  PubMed
               28.      Han Y, Zheng X, Fu M, et al. Negative photoconductivity of InAs nanowires. Phys Chem Chem Phys 2016;18:818-26.  DOI  PubMed
               29.      Wei P, Chattopadhyay S, Yang M, et al. Room-temperature negative photoconductivity in degenerate InN thin films with a supergap
                   excitation. Phys Rev B 2010:81.  DOI
               30.      Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on
                   metastable phase α-Ga O /ZnO Isotype Heterostructures. ACS Appl Mater Interfaces 2017;9:36997-7005.  DOI
                                  2
                                   3
               31.      Wu JY, Chun YT, Li S, et al. Broadband MoS  field-effect phototransistors: ultrasensitive visible-light photoresponse and negative
                                                  2
                   infrared photoresponse. Adv Mater 2018;30:1705880.  DOI  PubMed
               32.      Yang Y, Peng X, Kim HS, et al. Hot carrier trapping induced negative photoconductance in inas nanowires toward novel nonvolatile
                   memory. Nano Lett 2015;15:5875-82.  DOI  PubMed
               33.      Tielrooij KJ, Song JCW, Jensen SA, et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys
                   2013;9:248-52.  DOI
               34.      Nomura K, MacDonald AH. Quantum hall ferromagnetism in graphene. Phys Rev Lett 2006;96:256602.  DOI  PubMed
               35.      Kong WY, Wu GA, Wang KY, et al. Graphene-β-Ga O  heterojunction for highly sensitive deep UV Photodetector application. Adv
                                                      2  3
                   Mater 2016;28:10725-31.  DOI  PubMed
               36.      Haque MA, Li J, Abdelhady AL, et al. Transition from positive to negative photoconductance in doped hybrid perovskite
                   semiconductors. Adv Opt Mater 2019;7:1900865.  DOI
               37.      Yang X, Ni P, Jing P, et al. Room temperature electrically driven ultraviolet plasmonic lasers. Adv Opt Mater 2019;7:1801681.  DOI
               38.      Yang X, Shan CX, Ni PN, et al. Electrically driven lasers from van der Waals heterostructures. Nanoscale 2018;10:9602-7.  DOI
                   PubMed
               39.      Lu Y, Shi Z, Shan C, Shen D. ZnO-based deep-ultraviolet light-emitting devices. Chinese Phys B 2017;26:047703.  DOI
               40.      Shi ZF, Xu TT, Wu D, et al. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires.
                   Nanoscale 2016;8:9997-10003.  DOI  PubMed
               41.      Shi ZF, Sun XG, Wu D, et al. High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH NH PbBr /ZnO
                                                                                                  3
                                                                                                      3
                                                                                               3
                   sandwich structure. Nanoscale 2016;8:10035-42.  DOI  PubMed
               42.      Guo W, Xu S, Wu Z, Wang N, Loy MM, Du S. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small
                   2013;9:3031-6.  DOI  PubMed
               43.      Liu X, Yang Y, Xing X, Wang Y. Grey level replaces fluorescent intensity: fluorescent paper sensor based on ZnO nanoparticles for
                   quantitative detection of Cu  without photoluminescence spectrometer. Sensor Actuat B Chem 2018;255:2356-66.  DOI
                                     2+
               44.      Barui AK, Veeriah V, Mukherjee S, et al. Zinc oxide nanoflowers make new blood vessels. Nanoscale 2012;4:7861-9.  DOI  PubMed
               45.      Kim K, Kim H, Choi K, Kim H, Lee J. ZnO hierarchical nanostructures grown at room temperature and their C H OH sensor
                                                                                                2  5
                   applications. Sensor Actuat B Chem 2011;155:745-51.  DOI
               46.      Pichat P. Powder photocatalysts: characterization by isotopic exchanges and photoconductivity; potentialities for metal recovery,
                   catalyst preparation and water pollutant removal. In Schiavello M. editor, Photocatalysis and environment: trends and applications.
                   Dordrecht: Springer Netherlands. 1988. pp 399-424.
               47.      Tan Y, Qiao Q, Weng T, et al. Self-powered photodetector based on poly(3-hexylthiophene)/Zinc oxide quantum dots Organic-
                   inorganic hybrid heterojunction. Chem Phys Lett 2022;806:140033.  DOI
               48.      Zhou YH, Zhang ZB, Xu P, Zhang H, Wang B. UV-visible photodetector based on I-type heterostructure of ZnO-QDs/monolayer
                   MoS . Nanoscale Res Lett 2019;14:364.  DOI  PubMed  PMC
                      2
               49.      Zhang J, Zhang X, Ding Y, Zhu Y. ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates. Appl Opt
                   2016;55:9105-12.  DOI  PubMed
               50.      Zhang BY, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun
                   2013;4:1811.  DOI  PubMed
               51.      Zhou H, Qiu C, Yu F, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer
                   graphenes. J Phys Chem C 2011;115:11348-54.  DOI
               52.      Wang Q, Tu Y, Ichii T, et al. Decoration of reduced graphene oxide by gold nanoparticles: an enhanced negative photoconductivity.
                   Nanoscale 2017;9:14703-9.  DOI  PubMed
               53.      Bhatt V, Kumar M, Kim J, Chung H, Yun J. Persistent photoconductivity in Al-doped ZnO photoconductors under air, nitrogen and
                   oxygen ambiance: role of oxygen vacancies induced DX centers. Ceram Int 2019;45:8561-70.  DOI
               54.      Wang Y, Ni Z, Liu L, et al. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010;4:4074-80.  DOI  PubMed
               55.      Fernando JFS, Zhang C, Firestein K, Nerkar JY, Golberg DV. ZnO quantum dots anchored in multilayered and flexible amorphous
                   carbon sheets for high performance and stable lithium ion batteries. J Mater Chem A 2019;7:8460-71.  DOI
               56.      Zhou Z, Pourhashem S, Wang Z, Duan J, Zhang R, Hou B. Distinctive roles of graphene oxide, ZnO quantum dots, and their
                   nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings. Chem Eng J 2022;439:135765.  DOI
               57.      Nowak E, Szybowicz M, Stachowiak A, et al. A comprehensive study of structural and optical properties of ZnO bulk crystals and
   53   54   55   56   57   58   59   60   61   62   63