Page 57 - Read Online
P. 57

Page 8 of 10         Yang et al. Microstructures 2023;3:2023005  https://dx.doi.org/10.20517/microstructures.2022.24

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Du S, Lu W, Ali A, et al. A broadband fluorographene photodetector. Adv Mater 2017;29:1700463.  DOI  PubMed
               2.       Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH. Fast, sensitive and spectrally tuneable colloidal-
                   quantum-dot photodetectors. Nat Nanotechnol 2009;4:40-4.  DOI  PubMed
               3.       Patel M, Kumar M, Kim J. Polarity flipping in an isotype heterojunction (p-SnS/p-Si) to enable a broadband wavelength selective
                   energy-efficient photodetector. J Mater Chem C 2018;6:6899-904.  DOI
               4.       Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical
                   communication applications. Adv Mater 2018;30:e1803422.  DOI  PubMed
               5.       Li Y, Shi Z, Li X, Shan C. Photodetectors based on inorganic halide perovskites: materials and devices. Chinese Phys B
                   2019;28:017803.  DOI
               6.       Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett 2016;16:4648-55.
                   DOI  PubMed
               7.       Liu CH, Chang YC, Norris TB, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
                   Nat Nanotechnol 2014;9:273-8.  DOI  PubMed
               8.       Rogalski A. Infrared detectors: status and trends. Prog Quantum Electron 2003;27:59-210.  DOI
               9.       Clark J, Lanzani G. Organic photonics for communications. Nat Photon 2010;4:438-46.  DOI
               10.      Ding N, Wu Y, Xu W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to
                   near infrared. Light Sci Appl 2022;11:91.  DOI  PubMed  PMC
               11.      Li C, Wang H, Wang F, et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-
                   dynamic-range imaging. Light Sci Appl 2020;9:31.  DOI  PubMed  PMC
               12.      Yao J, Yang G. 2D material broadband photodetectors. Nanoscale 2020;12:454-76.  DOI  PubMed
               13.      Nanda Kumar Reddy N, Godavarthi S, Mohan Kumar K, et al. Evaluation of temperature dependent electrical transport parameters in
                   Fe O /SiO /n-Si metal-insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range. J Mater Sci
                      4
                          2
                     3
                   Mater Electron 2019;30:8955-66.  DOI
               14.      Chesnokov S, Dolzhenko D, Ivanchik I, Khokhlov D. Far infrared high-performance lead telluride-based photodetectors for space-born
                   applications. Infrared Phys Technol 1994;35:23-31.  DOI
               15.      Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv Mater 2002;14:158-60.
                   DOI
               16.      Schaffer M, Mitkas P. Requirements and constraints for the design of smart photodetector arrays for page-oriented optical memories.
                   IEEE J Select Topics Quantum Electron 1998;4:856-65.  DOI
               17.      Hu W, Li Q, Chen X, Lu W. Recent progress on advanced infrared photodetectors. Acta Phys Sin 2019;68:35.  DOI
               18.      Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater
                   2019;29:1803807.  DOI
               19.      Zhang X, John S. Broadband light-trapping enhancement of graphene absorptivity. Phys Rev B 2019:99.  DOI
               20.      Jia W, Ren P, Tian Y, Fan C. Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials.
                   Chinese Phys B 2019;28:026102.  DOI
               21.      Xia C, Xue B, Wang T, Peng Y, Jia Y. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals
                   heterostructures. Appl Phys Lett 2015;107:193107.  DOI
               22.      Du H, Jia Y, Sun Q, Guo Z. Single vacancy defects diffusion at the initial stage of graphene growth: a first-principles study. Phys Lett
                   A 2015;379:1270-3.  DOI
               23.      Cui B, Xing Y, Han J, et al. Negative photoconductivity in low-dimensional materials. Chinese Phys B 2021;30:028507.  DOI
               24.      Biswas C, Güneş F, Duong DL, et al. Negative and positive persistent photoconductance in graphene. Nano Lett 2011;11:4682-7.  DOI
                   PubMed
               25.      Sun Z, Liu Z, Li J, Tai GA, Lau SP, Yan F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with
   52   53   54   55   56   57   58   59   60   61   62