Page 182 - Read Online
P. 182

Dastidar et al. Vessel Plus 2020;4:14  I  http://dx.doi.org/10.20517/2574-1209.2019.36                                               Page 29 of 29

               195. Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, et al. Thermo-responsive polymer nanoparticles with a core-shell micelle structure
                   as site-specific drug carriers. J Control Release 1997;48:157-64.
               196. Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, et al. Curcumin-loaded biocompatible thermoresponsive
                   polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 2011;360:39-51.
               197. Seo HI, Cho AN, Jang J, Kim DW, Cho SW, et al. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of
                   human induced pluripotent stem cells. Nanomedicine 2015;11:1861-9.
               198. Arafa MG, El-Kased RF, Elmazar MM. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing
                   agents. Sci Rep 2018;8:13674.
               199. Kim JH, Lee TR. Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chem Materials 2004;16:3647-51.
               200. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019;7:167.
               201. Farooq MU, Novosad V, Rozhkova EA, Wali H, Ali A, et al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics
                   to hela cells. Sci Rep 2018;8:2907.
               202. Chandran PR, Thomas RT. Chapter 14 - Gold Nanoparticles. In: Thomas S, Grohens Y, Ninan N, editors. Cancer drug delivery, in
                   nanotechnology applications for tissue engineering. William Andrew Publishing: Oxford; 2015. pp. 221-37.
               203. Sato I, Umemura M, Mitsudo K, Fukumura H, Kim JH, et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery
                   using single-drug nanoparticles. Sci Rep 2016;6:24629.
               204. Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer
                   therapy. Pharmaceutics 2019;11:306.
               205. Zhao T, Qin S, Peng L, Li P, Feng T, et al. Novel hyaluronic acid-modified temperature-sensitive nanoparticles for synergistic chemo-
                   photothermal therapy. Carbohydr Polym 2019;214:221-33.
               206. Winslow TB, Eranki A, Ullas S, Singh AK, Repasky EA, et al. A pilot study of the effects of mild systemic heating on human head
                   and neck tumour xenografts: analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy. Int J
                   Hyperthermia 2015;31:693-701.
               207. Xu Y, Choi J, Hylander B, Sen A, Evans SS, et al. Fever-range whole body hyperthermia increases the number of perfused tumor blood
                   vessels and therapeutic efficacy of liposomally encapsulated doxorubicin. Int J Hyperthermia 2007;23:513-27.
   177   178   179   180   181   182   183   184   185   186   187