Page 177 - Read Online
P. 177

Page 24 of 29                                                Dastidar et al. Vessel Plus 2020;4:14  I  http://dx.doi.org/10.20517/2574-1209.2019.36

                   Fibrogenesis Tissue Repair 2010;3:12.
               41.  Wagner M, Wiig H. Tumour interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015;5:115.
               42.  Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors:
                   significance of elevated interstitial pressure. Cancer Res 1988;48:7022-32.
               43.  Clauss MA, Jain RK. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res 1990;50:3487-92.
               44.  Golombek SK, May JN, Theek B, Appold L, Drude N, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug
                   Deliv Rev 2018;130:17-38.
               45.  Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, et al. Thirty years of cancer nanomedicine: success, frustration, and hope.
                   Cancers (Basel) 2019;11:1855.
               46.  Zanotelli MR, Reinhart-King CA. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol 2018;1092:91-112.
               47.  Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, et al. Causes, consequences, and remedies for growth-induced
                   solid stress in murine and human tumors. Proc Natl Acad Sci U S A 2012;109:15101-8.
               48.  Zuo H. iRGD: a promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J Oncol 2019;2019:9367845.
               49.  Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumour targeting. Nanomedicine (Lond) 2013;8:1509-28.
               50.  Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014;25:2677-81.
               51.  Chen Z, Zheng Y, Shi Y, Cui Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl)
                   gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 2018;13:319-36.
               52.  Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed
                   Nanobiotechnol 2016;8:776-91.
               53.  Krens SD, Lassche G, Jansman FGA, Desar IME, Lankheet NAG, et al. Dose recommendations for anticancer drugs in patients with
                   renal or hepatic impairment. Lancet Oncol 2019;20:e200-7.
               54.  De Angelis C. Side effects related to systemic cancer treatment: are we changing the Promethean experience with molecularly targeted
                   therapies? Curr Oncol 2008;15:198-9.
               55.  Golombek SK, May JN, Theek B, Appold L, Drude N, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug
                   Deliv Rev 2018;130:17-38.
               56.  Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in
                   vitro and in vivo evaluation. J Control Release 2009;133:11-7.
               57.  Lu Z, Yeh TK, Tsai M, Au JL, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer
                   Res 2004;10:7677-84.
               58.  Zamboni WC. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin Cancer Res 2005;11:8230-4.
               59.  Hu H, Wang B, Lai C, Xu X, Zhen Z, et al. iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Dev Res
                   2019;80:1080-8.
               60.  Mangaiyarkarasi R, Chinnathambi S, Karthikeyan S, Aruna P, Ganesan S. Paclitaxel conjugated Fe 3 O 4 @LaF3:Ce ,Tb  nanoparticles as
                                                                                              3+
                                                                                           3+
                   bifunctional targeting carriers for cancer theranostics application. J Magnetism Magnetic Materials 2016;399:207-15.
               61.  Dalela M, Shrivastav TG, Kharbanda S, Singh H. pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-
                   maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl Mater Interfaces 2015;7:26530-48.
               62.  Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic
                   accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92.
               63.  Laitakari J, Näyhä V, Stenbäck F. Size, shape, structure, and direction of angiogenesis in laryngeal tumour development. J Clin Pathol
                   2004;57:394-401.
               64.  Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007;26:489-502.
               65.  Ziyad S, Iruela-Arispe ML. Molecular mechanisms of tumor angiogenesis. Genes Cancer 2011;2:1085-96.
               66.  Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J
                   Antimicrob Chemother 2013;68:257-74.
               67.  Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004;4:806-13.
               68.  Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, et al. Upregulation of EGFR signaling is correlated with tumor stroma
                   remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res 2015;17:141.
               69.  Dastidar DG, Das A, Datta S, Ghosh S, Pal M, et al. Paclitaxel-encapsulated core-shell nanoparticle of cetyl alcohol for active targeted
                   delivery through oral route. Nanomedicine (Lond) 2019;14:2121-50.
               70.  Sun Q, Ojha T, Kiessling F, Lammers T, Shi Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules 2017;18:1449-59.
               71.  Zhang YR, Lin R, Li HJ, He WL, Du JZ, et al. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
                   Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1519.
               72.  Nagamitsu A, Greish K, Maeda H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug
                   SMANCS: cases of advanced solid tumors. Jpn J Clin Oncol 2009;39:756-66.
               73.  Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol
                   2011;301:H1-11.
               74.  Suzuki M, Hori K, Abe I, Saito S, Sato H. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with
                   angiotensin II. J Natl Cancer Inst 1981;67:663-9.
               75.  Scicinski J, Oronsky B, Ning S, Knox S, Peehl D, et al. NO to cancer: The complex and multifaceted role of nitric oxide and the
                   epigenetic nitric oxide donor, RRx-001. Redox Biol 2015;6:1-8.
   172   173   174   175   176   177   178   179   180   181   182