Page 178 - Read Online
P. 178

Dastidar et al. Vessel Plus 2020;4:14  I  http://dx.doi.org/10.20517/2574-1209.2019.36                                               Page 25 of 29

               76.  Frérart F, Sonveaux P, Rath G, Smoos A, Meqor A, et al. The acidic tumor microenvironment promotes the reconversion of nitrite into
                   nitric oxide: towards a new and safe radiosensitizing strategy. Clin Cancer Res 2008;14:2768-74.
               77.  Tahara Y, Yoshikawa T, Sato H, Mori Y, Zahangir MH, et al. Encapsulation of a nitric oxide donor into a liposome to boost the enhanced
                   permeation and retention (EPR) effect. Medchemcomm 2016;8:415-21.
               78.  Wei G, Wang Y, Huang X, Yang G, Zhao J, et al. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood
                   vessels with no for highly effective cancer treatment. Adv Healthc Mater 2018;7:e1801094.
               79.  Fang J, Islam R, Islam W, Yin H, Subr V, et al. Augmentation of EPR effect and efficacy of anticancer nanomedicine by carbon monoxide
                   generating agents. Pharmaceutics 2019;11:343.
               80.  Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010;9:728-43.
               81.  Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 2008;60:79-127.
               82.  Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment.
                   Apoptosis 2004;9:27-35.
               83.  Fang J, Qin H, Nakamura H, Tsukigawa K, Shin T, et al. Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced
                   permeability and retention effect in solid tumors. Cancer Sci 2012;103:535-41.
               84.  Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58-62.
               85.  Folkman J. Tumour angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6.
               86.  Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S, Thijssen VLJL. Combining radiotherapy with anti-angiogenic therapy and
                   immunotherapy; a therapeutic triad for cancer? Front Immunol 2019;9:3107.
               87.  Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, et al. Vascular disrupting action of electroporation and electrochemotherapy with
                   bleomycin in murine sarcoma. Br J Cancer 2008;98:388-98.
               88.  Teicher BA, Dupuis NP, Emi Y, Ikebe M, Kakeji Y, et al. Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the
                   9L gliosarcoma. In Vivo 1995;9:11-8.
               89.  Czito BG, Bendell JC, Willett CG, Morse MA, Blobe GC, et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in
                   rectal cancer: Phase I trial results. Int J Radiat Oncol Biol Phys 2007;68:472-8.
               90.  Fitzgerald KA, O’Neill LAJ, Gearing AJH, Callard RE. In: Fitzgerald KA, Callard RE, editors. The cytokine factsbook and webfacts, 2th
                   ed. Academic Press: London; 2001. pp. 139-41.
               91.  O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell
                   1997;88:277-85.
               92.  Bonneterre J, Montpas N, Boularan C, Galés C, Heveker N. Chapter Seven - analysis of arrestin recruitment to chemokine receptors by
                   bioluminescence resonance energy transfer. In: Handel TM, editor. Methods in enzymology. Academic Press; 2016. pp. 131-53.
               93.  Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and
                   tumor growth. J Biol Chem 2000;275:1209-15.
               94.  Sund M, Nyberg P, Eikesdal HP. Endogenous matrix-derived inhibitors of angiogenesis. Pharmaceuticals 2010;3:3021-39.
               95.  Keith B, Simon MC. 17 - Tumour angiogenesis. In: Mendelsohn J, et al., editors. The molecular basis of cancer, 4th edition. Philadelphia;
                   2015. pp. 257-68.e2.
               96.  Singhal S, Mehta J. Thalidomide in cancer: potential uses and limitations. Bio Drugs 2001;15:163-72.
               97.  Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. Oncologist 2010;15:819-25.
               98.  Méndez-Vidal MJ, Molina Á, Anido U, Chirivella I, Etxaniz O, et al. Pazopanib: evidence review and clinical practice in the management
                   of advanced renal cell carcinoma. BMC Pharmacol Toxicol 2018;19:77.
               99.  Yoshida-Ichikawa Y, Tanabe M, Tokuda E, Shimizu H, Horimoto Y, et al. Overcoming the adverse effects of everolimus to achieve
                   maximum efficacy in the treatment of inoperable breast cancer: a review of 11 cases at our hospital. Case Rep Oncol 2018;11:511-20.
               100. Cai X, Zhu H, Zhang Y, Gu Z. Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for
                   cancer therapy. ACS Appl Mater Interfaces 2017;9:9402-15.
               101. YSaw PE, Zhang A, Nie Y, Zhang L, Xu Y, Xu X. Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin A siRNA
                   delivery and targeted malignant glioblastoma therapy. Front Pharmacol 2018;9:1194.
               102. Xu X, Li Z, Zhao X, Keen L, Kong X. Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater 2016;3:187-
                   95.
               103. Zheng G, Zhao R, Xu A, Shen Z, Chen X, et al. Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for
                   ASGPR mediated targeted HCC therapy. Eur J Pharm Sci 2018;111:492-502.
               104. Shen J, Sun H, Meng Q, Yin Q, Zhang Z, et al. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular
                   carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol Pharm 2014;11:3342-51.
               105. Li F, Wang Y, Chen WL, Wang DD, Zhou YJ, et al. Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-
                   proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment. Theranostics 2019;9:5886-98.
               106. Fountzilas G, Kourea HP, Bobos M, Televantou D, Kotoula V, et al. Paclitaxel and bevacizumab as first line combined treatment
                   in patients with metastatic breast cancer: the Hellenic Cooperative Oncology Group experience with biological marker evaluation.
                   Anticancer Res 2011;31:3007-18.
               107. Bartczak D, Muskens OL, Sanchez-Elsner T, Kanaras AG, Millar TM. Manipulation of in vitro angiogenesis using peptide-coated gold
                   nanoparticles. ACS Nano 2013;7:5628-36.
               108. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using
                   cetuximab as a targeting agent. Cancer Res 2008;68:1970-8.
   173   174   175   176   177   178   179   180   181   182   183